Skip to main content
Log in

Phase Equilibria in the Sm2O3–CaO–NiO and Sm2O3–NiO–CoO Systems

  • Published:
Inorganic Materials Aims and scope

Abstract

Phase equilibria in the 1/2 Sm2O3–CaO–NiO and 1/2 Sm2O3–NiO–CoO systems are systematically studied at 1100°C in air. The formation of two types of solid solutions Sm2– yCayNiO4 – δ (0.5 ≤ y ≤ 0.55) and SmCo1– xNixO3 – δ (0 < x ≤ 0.15) crystallized in the K2NiF4-type structure and perovskite structure, respectively, is detected. The oxygen content in the samples within the temperature range 25–1100°C in air is determined by means of high temperature thermogravimetry and dichromatometric titration. Isobaric isothermal cross sections of the phase diagrams for the 1/2 Sm2O3–CaO–NiO and 1/2 Sm2O3–NiO–CoO systems at 1100°C and \({{p}_{{{{{\text{O}}}_{{\text{2}}}}}}}\) = 0.21 atm are proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Petric, A., Huang, P., and Tietz, F., Evaluation of La–Sr–Co–Fe–O perovskites for solid oxide fuel cells and gas separation membranes, Solid State Ionics, 2000, vol. 135, nos. 1–4, pp. 719–725.

    Article  CAS  Google Scholar 

  2. Tsipis, E.V. and Kharton, V.V., Electrode materials and reaction mechanisms in solid oxide fuel cells: a brief review. III. Recent trends and selected methodological aspects, J. Solid State Electrochem., 2011, vol. 15, no. 5, pp. 1007–1040.

    Article  CAS  Google Scholar 

  3. Chaudhari, V.N., Khandale, A.P., and Bhoga, S.S., An investigation on strontium doped Sm2NiO4 + δ cathode for intermediate temperature solid oxide fuel cells, J. Power Sources, 2014, vol. 248, pp. 647–654.

    Article  CAS  Google Scholar 

  4. Amow, G., Davidson, I.J., and Skinner, S.J., A comparative study of the Ruddlesden–Popper series, Lan + 1-NinO3n + 1 (n = 1, 2 and 3), for solid-oxide fuel-cell cathode applications, Solid State Ionics, 2006, vol. 177, pp. 1205–1210.

    Article  CAS  Google Scholar 

  5. Michel, C.R., Delgado, E., Santillan, G., Martínez, A.H., and Chavez-Chavez, A., An alternative gas sensor material: synthesis and electrical characterization of SmCoO3, Mater. Res. Bull., 2007, vol. 42, pp. 84–93.

    Article  CAS  Google Scholar 

  6. Tu, H.Y., Takeda, Y., Imanishi, N., and Yamamoto, O., Ln1 – xSrxCoO3 (Ln = Sm, Dy) for the electrode of solid oxide fuel cells, Solid Stare Ionics, 1997, vol. 100, pp. 283–288.

    Article  CAS  Google Scholar 

  7. Takahashi, S., Nishimoto, S., Matsuda, M., and Miyake, M., Electrode properties of the Ruddlesden–Popper series, Lan + 1NinO3n + 1 (n = 1, 2, and 3), as intermediate-temperature solid oxide fuel cells, J. Am. Ceram. Soc., 2010, vol. 93, no. 8, pp. 2329–2333.

    Article  CAS  Google Scholar 

  8. Murata, A., Hai, C., and Matsuda, M., Cathode property and thermal stability of Pr and Nd mixed Ni-based Ruddlesden–Popper oxide for low-temperature operating solid oxide fuel cell, Mater. Lett., 2014, vol. 136, pp. 292–294.

    Article  CAS  Google Scholar 

  9. Vibhu, V., Rougier, A., Nicollet, C., Flura, A., Grenier, J.-C., and Bassat, J.-M., La2 – xPrxNiO4 + δ as suitable cathodes for metal supported SOFCs, Solid State Ionics, 2015, vol. 278, pp. 32–37.

    Article  CAS  Google Scholar 

  10. Tong, X., Zhou, F., Yang, S., Zhong, S., Wei, M., and Liu, Y., Performance and stability of Ruddlesden–Popper La2NiO4 + δ oxygen electrodes under solid oxide electrolysis cell operation conditions, Ceram. Int., 2017, vol. 43, no. 14, pp. 10 927–10 933.

  11. Niwa, E., Nakamura, T., Mizusaki, J., and Hashimoto, T., Analysis of structural phase transition of Nd2NiO4 + δ by scanning thermal measurement under controlled oxygen partial pressure, Thermochim. Acta, 2011, vol. 523, nos. 1–2, pp. 46–50.

    Article  CAS  Google Scholar 

  12. Mauvy, F., Lalanne, C., Bassat, J.M., Grenier, J.C., Zhao, H., Dordor, P., and Stevens, Ph., Oxygen reduction on porous Ln2NiO4 + δ electrodes, J. Eur. Ceram. Soc., 2005, vol. 25, pp. 2669–2672.

    Article  CAS  Google Scholar 

  13. Cherepanov, V.A., Petrov, A.N., Grimova, L.Yu., and Novitskii, E.M., Thermodynamic properties of the La–Ni–O system, Zh. Fiz. Khim., 1983, vol. 57, no. 4, pp. 859–863.

    CAS  Google Scholar 

  14. Petrov, A.N., Cherepanov, V.A., Zuyev, A.Yu., and Zhukovsky, V.M., Thermodynamic stability of ternary oxides in Ln–M–O systems (Ln = La, Pr, Nd; M = Co, Ni, Cu), J. Solid State Chem., 1988, vol. 77, no. 1, pp. 1–14.

    Article  CAS  Google Scholar 

  15. Bannikov, D.O. and Cherepanov, V.A., Thermodynamic properties of complex oxides in the La–Ni–O system, J. Solid State Chem., 2006, vol. 179, no. 8, pp. 2721–2727.

    Article  CAS  Google Scholar 

  16. Ha, S.D., Otaki, M., Jaramillo, R., Podpirka, A., and Ramanathan, S., Stable metal–insulator transition in epitaxial SmNiO3 thin films, J. Solid State Chem., 2012, vol. 190, pp. 233–237.

    Article  CAS  Google Scholar 

  17. Colin, J.P., Blakely, K., and Poltavets, V.V., Low temperature high-pressure synthesis of LnNiO3 (Ln = Eu, Gd) in molten salts, Solid State Sci., 2013, vol. 17, pp. 72–75.

    Google Scholar 

  18. Alonso, J.A., Martínez-Lope, M.J., and Rasines, I., Preparation, crystal structure, and metal-to-insulator transition of EuNiO3, J. Solid State Chem., 1995, vol. 120, no. 1, pp. 170–174.

    Article  CAS  Google Scholar 

  19. Falcóona, H., Martínez-Lope, M.J., Alonso, J.A., and Fierro, J.L.G., Large enhancement of the catalytic activity for CO oxidation on hole doped (Ln,Sr)NiO3 (Ln = Pr, Sm, Eu) perovskites, Solid State Ionics, 2000, vol. 131, nos. 3–4, pp. 237–248.

    Article  Google Scholar 

  20. Li, Q., Fan, Y., Zhao, H., Sun, L.-P., and Huo, L.-H., Preparation and electrochemical properties of a Sm2 – x-SrxNiO4 cathode for an IT-SOFC, J. Power Sources, 2007, vol. 167, pp. 64–68.

    Article  CAS  Google Scholar 

  21. Cherepanov, V.A., Barkhatova, L.Yu., and Petrov, A.N., Phase equilibria in the Ln–Mn–O system (Ln = Pr, Nd) and general aspects of the stability of the perovskite phase LnMeO3, J. Phys. Chem. Solids, 1994, vol. 55, no. 3, pp. 229–235.

    Article  CAS  Google Scholar 

  22. Aksenova, T.V., Vakhromeeva, A.E., Elkalashy, Sh.I., Urusova, A.S., and Cherepanov, V.A., Phase equilibria, crystal structure, oxygen nonstoichiometry and thermal expansion of complex oxides in the Nd2O3–SrO–Fe2O3 system, J. Solid State Chem., 2017, vol. 251, pp. 70–78.

    Article  CAS  Google Scholar 

  23. Petrov, A.N., Kropanev, A.Yu., Zhukovskii, V.M., Cherepanov, V.A., and Neudachina, G.K., Conditions and mechanism of solid-state synthesis of the RCoO3 (R = La, Pr, Nd, Sm, Gd) rare-earth cobaltites, Zh. Neorg. Khim., 1981, vol. 26, no. 12, pp. 3190–3194.

    CAS  Google Scholar 

  24. Kropanev, A.Yu., Petrov, A.N., and Zhukovskii, V.M., Phase diagrams of the Ln–Co–O (Ln = Sm, Eu, Gd, Tb, Dy, Ho) systems, Zh. Neorg. Khim., 1983, vol. 28, no. 11, pp. 2938–2943.

    CAS  Google Scholar 

  25. Galayda, A.P., Volkova, N.E., Gavrilova, L.Ya., and Cherepanov, V.A., Phase equilibria, structure and properties of intermediate phases in the Sm2O3–Fe2O3–CoO and Sm2O3–CaO–CoO systems, J. Alloys Compd., 2017, vol. 718, pp. 288–297.

    Article  CAS  Google Scholar 

  26. Wong-Ng, W., Laws, W., Lapidus, S.H., and Kaduk, J.A., Phase equilibria and crystal chemistry of the CaO–1/2 Sm2O3–CoOz system at 885°C in air, Solid State Sci., 2015, vol. 48, pp. 31–38.

    Article  CAS  Google Scholar 

  27. Tu, H.Y., Takeda, Y., Imanishi, N., and Yamamoto, O., Ln1 – xSrxCoO3 (Ln = Sm, Dy) for the electrode of solid oxide fuel cells, Solid Stare Ionics, 1997, vol. 100, pp. 283–288.

    Article  CAS  Google Scholar 

  28. Knop, O., Sutarno, R., and Nakagawa, Y., Chalcogenides of the transition elements. VI. X-ray, neutron, and magnetic investigation of the spinels Co3O4, NiCo2O4, Co3S4, and NiCo2S4, Can. J. Chem., 1968, vol. 46, pp. 3463–3476.

    Article  CAS  Google Scholar 

  29. Wu, Y.Q., Xiang, Y.C., Ji, P.T., and Zhou, Q.Q., Sol-gel approach for controllable synthesis and electrochemical properties of NiCo2O4 crystals as electrode materials for application in supercapacitors, Electrochim. Acta, 2011, vol. 56, pp. 7517–7522.

    Article  CAS  Google Scholar 

  30. Takayama, E., Different scanning coulometric titrometry: application to the system Co–Ni–O at 1000°C, J. Solid State Chem., 1983, vol. 50, pp. 70–78.

    Article  CAS  Google Scholar 

  31. Volkova, N.E., Maklakova, A.V., Gavrilova, L.Ya., and Cherepanov, V.A., Phase equilibria, crystal structure, and properties of intermediate oxides in the Sm2O3–SrO–CoO system, Eur. J. Inorg. Chem., 2017, pp. 3285–3292.

  32. Shannon, R.D., Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides, Acta Crystallogr., Sect. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr., 1976, vol. 32, no. 5, pp. 751–767.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. E. Volkova.

Additional information

The article was translated by the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Galayda, A.P., Volkova, N.E., Gavrilova, L.Y. et al. Phase Equilibria in the Sm2O3–CaO–NiO and Sm2O3–NiO–CoO Systems. Inorg Mater 55, 593–599 (2019). https://doi.org/10.1134/S0020168519060049

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168519060049

Keywords:

Navigation