Skip to main content
Log in

Magnetic Properties and Electronic Conductivity of Fe3O4 Magnetite Nanowires

  • Published:
Inorganic Materials Aims and scope

Abstract

We have separately assessed the contributions of isolated Fe3+ ions and the ferrimagnetic subsystem to the total magnetization of an aligned magnetite (Fe3O4) nanowire array grown in pores of an anodized alumina membrane and evaluated the magnetic anisotropy field of the nanowires, which has been found to be an order of magnitude weaker than the expected shape anisotropy field. The reduction in magnetic anisotropy in the nanowires can be accounted for by dipole–dipole interaction between individual nanowires in the array. In electron spin resonance spectra of the nanowires, we have identified a phase-inverted line, corresponding to their microwave magnetoresistance. The Verwey transition in the magnetite nanowires has been shown to be suppressed due to deviations from stoichiometry and size effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Belov, K.P., Electronic processes in magnetite (“the enigmas of magnetite”), Usp. Fiz. Nauk, 1993, vol. 163, no. 5, pp. 53–66.

    Article  CAS  Google Scholar 

  2. Margulies, D.T., Parker, F.T., Spada, F.E., Goldman, R.S., Li, J., Sinclair, R., and Berkowitz, A.E., Anomalous moment and anisotropy behavior in Fe3O4 films, Phys. Rev. B: Condens. Matter Mater. Phys., 1996, vol. 53, no. 14, pp. 9175–9187.

    Article  CAS  Google Scholar 

  3. Ziese, M. and Blythe, H.J., Magnetoresistance of magnetite, J. Phys.: Condens. Matter, 2000, vol. 12, no. 1, pp. 302–315.

    Google Scholar 

  4. Kazakova, O., Daly, B., and Holmes, J.D., Tunable magnetic properties of metal/metal oxide nanoscale coaxial cables, Phys. Rev. B: Condens. Matter Mater. Phys., 2006, vol. 74, no. 18, pp. 184 413–184 421.

  5. Tarasov, V.F., Key features of broadband EPR spectroscopy of singlet states in weak magnetic fields, Pis’ma Zh. Eksp. Teor. Fiz., 1998, vol. 68, no. 5, pp. 370–375.

    CAS  Google Scholar 

  6. Golosovsky, M., Monod, M., Muduli, P.K., et al., Nonresonant microwave absorption in epitaxial La0.7Sr0.3MnO3 films and its relation to colossal magnetoresistance, Phys. Rev. B: Condens. Matter Mater. Phys., 2007, vol. 76, no. 18, pp. 184 414–184 423.

  7. Sastry, M.D., Nagar, Y.C., Bhushan, B., et al., An unusual radiation dose dependent EPR line at g eff = 2.54 in feldspars: possible evidence of Fe3+O2− ↔ Fe2+O and exchange coupled Fe3+–Fe2+ –nO, J. Phys.: Condens. Matter, 2008, vol. 20, no. 2, paper 025 224.

  8. Singhal, A., Achary, S.N., Manjanna, J., et al., Colloidal Fe-doped indium oxide nanoparticles: facile synthesis, structural, and magnetic properties, J. Phys. Chem. C, 2009, vol. 113, no. 9, pp. 3600–3606.

    Article  CAS  Google Scholar 

  9. Castner, T., Newell, G.S., Holton, W.C., and Slichter, C.P., Note on the paramagnetic resonance of iron in glass, J. Chem. Phys., 1960, vol. 32, no. 3, pp. 668–673.

    Article  CAS  Google Scholar 

  10. Ramos, C.A., Vassallo Brigneti, E., and Vázquez, M., Self-organized NWs: evidence of dipolar interactions from ferromagnetic resonance measurements, Phys. B (Amsterdam, Neth.), 2004, vol. 354, pp. 195–197.

    Google Scholar 

  11. Tamion, A., Hillenkamp, M., Tournus, F., et al., Accurate determination of the magnetic anisotropy in cluster-assembled nanostructures, Appl. Phys. Lett., 2009, vol. 95, no. 6, paper 062 503.

  12. Goya, G.F., Berquo, T.S., Fonseca, F.C., and Morales, M.P., Static and dynamic magnetic properties of spherical magnetite nanoparticles, J. Appl. Phys., 2003, vol. 94, no. 5, pp. 3520–3528.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

In this work, we used equipment at the Shared Analytical Facilities Center, Institute of Problems of Chemical Physics, Russian Academy of Sciences. We are grateful to O.L. Kazakova for providing the nanowire samples and electron micrographs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. Dmitriev.

Additional information

Translated by O. Tsarev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dmitriev, A.I., Alekseev, S.I. & Kostyuchenko, S.A. Magnetic Properties and Electronic Conductivity of Fe3O4 Magnetite Nanowires. Inorg Mater 55, 576–581 (2019). https://doi.org/10.1134/S0020168519060037

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168519060037

Keywords:

Navigation