Skip to main content
Log in

Heat Capacity of the Gd2Ti2O7 and Lu2Ti2O7 Pyrochlores in the Range 350–1000 K

  • Published:
Inorganic Materials Aims and scope

Abstract

The Gd2Ti2O7 and Lu2Ti2O7 titanates (pyrochlore structure, sp. gr. Fd3m) have been prepared by solid-state reactions in air at temperatures from 1673 to 1773 K using the Gd2O3, Lu2O3, and TiO2 oxides as starting materials. Their high-temperature heat capacity has been determined by differential scanning calorimetry in the range 350–1000 K. The experimental heat capacity data have been used to evaluate the thermodynamic functions of gadolinium and lutetium dititanates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Shcherbakova, L.G., Mamsurova, L.G., and Sikhanova, G.E., Rare-earth titanates, Usp. Khim., 1979, vol. 58, no. 3, pp. 423–447.

    Google Scholar 

  2. Komissarova, L.N., Shatskii, V.M., Pushkina, G.Ya., et al., Soedineniya redkozemel’nykh elementov. Karbonaty, oksalaty, nitraty, titanaty (Rare-Earth Compounds: Carbonates, Oxalates, Nitrates, and Titanates), Moscow: Nauka, 1984.

  3. Balakrishnan, G., Petrenko, O.A., Lees, M.R., et al., Single crystal growth of rare earth titanate pyrochlores, J. Phys.: Condens. Matter, 1998, vol. 10, pp. L723–L725.

    CAS  Google Scholar 

  4. Prabhakaran, D. and Boothroyd, A.T., Crystal growth of spin-ice pyrochlores by the floating-zone method, J. Cryst. Growth, 2011, vol. 318, pp. 1053–1056.

    Article  CAS  Google Scholar 

  5. Li, Q.J., Xu, L.M., Fan, C., et al., Single crystal growth of the pyrochlores R2Ti2O7 (R – rare-earth) by the optical-floating-zone method, J. Cryst. Growth, 2013, vol. 377, pp. 96–100.

    Article  CAS  Google Scholar 

  6. Sosin, S.S., Prozorova, L.A., Lees, M.R., et al., Magnetic excitations in the XY-pyrochlore antiferromagnet Er2Ti2O7, Phys. Rev. B: Condens. Matter Mater. Phys., 2010, vol. 82, paper 094 428.

  7. Dalmas de Réotier, P., Yaouanc, A., Chapuis, Y., et al., Magnetic order, magnetic correlations, and spin dynamics in the pyrochlore antiferromagnet Er2Ti2O7, Phys. Rev. B: Condens. Matter Mater. Phys., 2012, vol. 86, pp. 104 424.

  8. Xia, Y., Liu, C.G., Yang, D.Y., et al., Synthesis and radiation tolerance of Lu2 – xCexTi2O7 pyrochlores, J. Nucl. Mater., 2016, vol. 480, pp. 182–188.

    Article  CAS  Google Scholar 

  9. Farmer, J., Boatner, L.A., Chakoumakos, B.C., et al., Structural and chemical properties of rare-earth titanate pyrochlores, J. Alloys Compd., 2014, vol. 605, pp. 63–70.

    Article  CAS  Google Scholar 

  10. Znang, F.X., Manoun, B., and Saxena, S.K., Structure change of pyrochlore Sm2Ti2O7 at high pressures, Appl. Phys. Lett., 2005, vol. 86, paper 181 906.

  11. Baroudi, K., Gaulin, B.D., Lapidus, S.H., et al., Symmetry and light stuffing of Ho2Ti2O7, Er2Ti2O7, and Yb2Ti2O7 characterized by synchrotron X-ray diffraction, Phys. Rev. B: Condens. Matter Mater. Phys., 2015, vol. 92, paper 024 110.

  12. Cioatera, N., Voinea, E.A., Panaintescu, E., et al., Changes in structure and electrical conductivity of rare-earth titanate pyrochlores under highly reducing atmosphere, Ceram. Int., 2016, vol. 42, pp. 1492–1500.

    Article  CAS  Google Scholar 

  13. Liu, C.G., Chen, L.J., Yang, D.Y., et al., The “bimodal effect” of the bulk modulus of rare-earth titanate pyrochlore, Comput. Mater. Sci., 2016, vol. 114, pp. 233–235.

    Article  CAS  Google Scholar 

  14. Shamblin, J., Tracy, C.L., Ewing, R.C., et al., Structural response of titanate pyrochlores to swift heavy ion irradiation, Acta Mater., 2016, vol. 117, pp. 207–215.

    Article  CAS  Google Scholar 

  15. Helean, K.B., Ushakov, S.V., Brown, C.E., et al., Formation enthalpies of rare earth titanate pyrochlores, J. Solid State Chem., 2004, vol. 177, pp. 1858–1866.

    Article  CAS  Google Scholar 

  16. Navrotsky, A., Lee, W., Mielewczyk-Gryn, A., et al., Thermodynamics of solid phases containing rare earth oxides, J. Chem. Thermodyn., 2015, vol. 88, pp. 126–141.

    Article  CAS  Google Scholar 

  17. Denisova, L.T., Chumilina, L.G., Denisov, V.M., et al., High-temperature heat capacity of samarium and erbium titanates with pyrochlore structure, Phys. Solid State, 2017, vol. 59, no. 12, pp. 2321–2324.

    Article  CAS  Google Scholar 

  18. Denisova, L.T., Kargin, Yu.F., and Denisov, V.M., Heat capacity of rare-earth stannates in the range 350–1000 K, Inorg. Mater., 2017, vol. 53, no. 9, pp. 956–961.

    Article  CAS  Google Scholar 

  19. Denisov, V.M., Denisova, L.T., Irtyugo, L.A., and Biront, V.S., Thermal physical properties of Bi4Ge3O12 single crystals, Phys. Solid State, 2010, vol. 52, no. 7, pp. 1362–1365.

    Article  CAS  Google Scholar 

  20. Denisova, L.T., Izotov, A.D., Chumilina, L.G., et al., Heat capacity and thermodynamic properties of bismuth orthovanadate in the temperature range 356–980 K, Dokl. Phys. Chem., 2016, vol. 467, no. 1, pp. 41–44.

    Article  CAS  Google Scholar 

  21. Denisova, L.T., Irtyugo, L.A., Kargin, Yu.F., et al., High-temperature heat capacity of the oxide compounds in the Bi2O3–V2O5 system, Inorg. Mater., 2017, vol. 53, no. 3, pp. 300–306.

    Article  CAS  Google Scholar 

  22. Leitner, J., Chuchvalec, P., Sedmidubský, D., et al., Estimation of heat capacities of solid mixed oxides, Thermochim. Acta, 2003, vol. 395, nos. 1–2, pp. 27–46.

    Article  CAS  Google Scholar 

  23. Reznitskii, L.A., Kalorimetriya tverdogo tela (Calorimetry of Solids), Moscow: Mosk. Gos. Univ., 1981.

  24. Panneerselvam, G., Venkata Krishnan, R., Antony, M.P., et al., Thermophysical measurements on dysprosium and gadolinium titanates, J. Nucl. Mater., 2004, vol. 327, pp. 220–225.

    Article  CAS  Google Scholar 

  25. Hayun, S. and Navrotsky, A., Formation enthalpies and heat capacities of rare earth titanates: RE2TiO5 (RE = La, Nd and Gd), J. Solid State Chem., 2012, vol. 187, pp. 70–74.

    Article  CAS  Google Scholar 

  26. Kandan, R., Prabhakara Reddy, B., Panneerselvam, G., et al., Calorimetric measurements on rare earth titanates: RE2TiO5 (RE = Sm, Gd and Dy), J. Therm. Anal. Calorim., 2016, vol. 124, pp. 1349–1355.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by the Russian Federation Ministry of Education and Science (state research target for Siberian Federal University in 2017–2019, project no. 4.8083.2017/8.9: Establishing a Database of Thermodynamic Characteristics of Multifunctional Mixed-Oxide Materials Containing Rare and Trace Elements).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. T. Denisova.

Additional information

Translated by O. Tsarev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Denisova, L.T., Chumilina, L.G., Ryabov, V.V. et al. Heat Capacity of the Gd2Ti2O7 and Lu2Ti2O7 Pyrochlores in the Range 350–1000 K. Inorg Mater 55, 477–481 (2019). https://doi.org/10.1134/S0020168519050029

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168519050029

Keywords:

Navigation