Skip to main content
Log in

Synthesis of Highly Dispersed 2D Aluminum Cobalt Oxyhydroxide Compounds Based on Microwave-Activation Products of Crystalline Gibbsite

  • Published:
Inorganic Materials Aims and scope

Abstract—

We have studied interaction between the microwave activation product of gibbsite and an aqueous cobalt nitrate solution at room temperature, atmospheric pressure, and pH 8.0 ± 0.3. The results demonstrate that, under such conditions, the reaction in the near-surface region of the microwave-activated gibbsite particles leads to the formation of an aluminum cobalt oxyhydroxide with fragments of spinel structure and the composition Со2.3Al0.7O4, and a Со6 –xAl2 –x(OH)1.5 · 3.5H2O (0 ≤ x ≤ 1) nonstoichiometric hydrotalcite. The morphology of such compounds is determined by 2D nanoparticles in the form of bent sheets 2–5 nm in thickness and 500 nm or more in length. After calcination at 500°C, the composition of the reaction products corresponds to the aluminum cobalt oxide Со2.3Al0.7O4 with the spinel structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Merikhi, J., Jungk, H., and Feldmann, C., Sub-micrometer CoAl2O4 pigment particles—synthesis and preparation of coatings, J. Mater. Chem., 2002, vol. 10, pp. 1311–1314.

    Article  Google Scholar 

  2. Rangappa, D., Ohara, S., Naka, T., Kondo, A., Ishii, M., and Adschiri, T., Synthesis and organic modification of CoAl2O4 nanocrystals supercritical water conditions, J. Mater. Chem., 2007, vol. 17, pp. 4426–4429.

    Article  CAS  Google Scholar 

  3. Evans, D.G. and Slade, R.C.T., Structural aspects of layered double hydroxides, Struct. Bonding, 2006, vol. 119, pp. 1–87.

    CAS  Google Scholar 

  4. Khodakov, A.Y., Chu, W., and Fongarland, P., Advances in the development of novel cobalt Fischer–Tropsch catalysts for synthesis of long-chain hydrocarbons and clean fuels, Chem. Rev., 2007, vol. 107, pp. 1692–1744.

    Article  CAS  PubMed  Google Scholar 

  5. Li, F. and Duan, X., Applications of layered double hydroxides, Struct. Bonding, 2006, vol. 119, pp. 193–223.

    Article  CAS  Google Scholar 

  6. Tian, Li, Huang, K., Liu, Y., and Liu, S., Topotactic synthesis of Co3O4 nanoboxes from Co(OH)2 nanoflakes, J. Solid State Chem., 2011, vol. 184, pp. 2961–2965.

    Article  CAS  Google Scholar 

  7. Tang, Y., Liu, Y., Yu, S., Mu, S., Xiao, S., Zhao, Y., and Gao, F., Morphology controlled synthesis of monodisperse cobalt hydroxide for supercapacitor with high performance and long cycle life, J. Power Sources, 2014, vol. 256, pp. 160–169.

    Article  CAS  Google Scholar 

  8. Jacobs, G., Das, T.K., Zhang, Y., Li, J., Racoillet, G., and Davis, B.H., Fischer–Tropsch synthesis: support, loading, and promoter effects on the reducibility of cobalt catalysts, Appl. Catal., A, 2002, vol. 233, pp. 263–281.

  9. Wang, C., Lui, S., Lui, L., and Bai, X., Synthesis of cobalt-aluminate spinels via glycine chelated precursors, J. Mater. Chem. Phys., 2006, vol. 96, pp. 361–370.

    Article  CAS  Google Scholar 

  10. Li, W., Li, J., and Guo, J., Synthesis and characterization of nano crystalline CoAl2O4 spinel powder by low temperature combustion, J. Eur. Ceram. Soc., 2003, vol. 23, pp. 2289–2295.

    Article  CAS  Google Scholar 

  11. Fedotov, M.A., Taraban, E.A., Krivoruchko, O.P., and Buyanov, R.A., Hydrolytic polycondensation of aqua ions in Al3+–Co2+ mixed nitrate solutions studied by nuclear magnetic resonance of different nuclei, Zh. Neorg. Khim., 1990, vol. 35, no. 5, pp. 1226–1230.

    CAS  Google Scholar 

  12. Taraban, E.A., Reaction between Al(III) and Co(II) hydroxides during mixing in an aqueous medium, Sib. Khim. Zh., 1991, no. 1, pp. 20–23.

  13. Bai, C.S., Soled, S., Dwight, K., and Wold, A., Preparation and characterization of dispersed “cobalt oxide” supported on γ-Al2O3, J. Solid State Chem., 1991, vol. 91, no. 1, pp. 148–152.

    Article  CAS  Google Scholar 

  14. Abdel-Salaman, K.M., Girgis, M.M., and Fahim, R.B., Surface texture of the mixed Al–Co oxide spinel phase, Surf. Technol., 1982, vol. 17, no. 4, pp. 281–290.

    Article  Google Scholar 

  15. Fogg, A.M., Williams, G.R., Chester, R., and O’Hare, D.A., Novel family of layered double hydroxides—[MAl4(OH)12](NO3)2 · xH2O (M = Co, Ni, Cu, Zn), J. Mater. Chem., 2004, vol. 14, pp. 2369–2371.

    Article  CAS  Google Scholar 

  16. Williams, G.R., Moorhouse, S.J., Timothy, J.P., Fogg, A.M., Rees, N.H., and O’Hare, D.A., New insights into the intercalation chemistry of Al(OH)3, Dalton Trans., 2011, vol. 40, pp. 6012–6022.

    Article  CAS  PubMed  Google Scholar 

  17. Krivoruchko, O.P., Buyanov, R.A., Paramzin, S.M., and Zolotovskii, B.P., Reactions of mechanochemically activated Al(III) hydroxides with crystalline divalent metal oxides, Kinet. Katal., 1988, vol. 29, no. 1, pp. 252–253.

    CAS  Google Scholar 

  18. Ragupathi, C., Vijaya, J.D., Narayanan, S., Jesudoss, S.K., and Kennedy, L.J., Highly selective oxidation of benzyl alcohol to benzaldehyde with hydrogen peroxide by cobalt aluminate catalysis: a comparison of conventional and microwave methods, Ceram. Int., 2015, vol. 41, pp. 2069–2080.

    Article  CAS  Google Scholar 

  19. Moraz-Lazaro, J.P., Blanco, O., Rodriguez-Betancourtt, V.M., Reyes-Gomez, J., and Michel, C.R., Enhanced CO2-sensing response of nanostructured cobalt aluminate synthesized using a microwave-assisted colloidal method, Sens. Actuators, B, 2016, vol. 226, pp. 518–524.

    Article  CAS  Google Scholar 

  20. Veronesi, P., Leonelli, C., and Bondioli, F., Energy efficiency in the microwave-assisted solid-state synthesis of cobalt aluminate pigment, Technologies, 2017, vol. 5, pp. 42–54.

    Article  Google Scholar 

  21. Krivoruchko, O.P., Zhuzhgov, A.V., Khabibulin, D.F., Tanashev, Yu.Yu., Bolotov, V.A., Ishchenko, A.V., Molina, I.Yu., and Parmon, V.N., Unusual bulk amorphization of gibbsite into atomic size aluminum–oxygen complexes occurring within initial microcrystals under microwave radiation, Dokl. Phys. Chem., 2012, vol. 445, no. 5, pp. 128–133.

    Article  CAS  Google Scholar 

  22. Zhuzhgov, A.V., Paukshtis, E.A., Krivoruchko, O.P., Molina, I.Yu., Larina, T.V., and Parmon, V.N., Regularities of Lewis site formation upon the microwave irradiation of gibbsite–γ-Al(OH)3, Russ. J. Phys. Chem. A, 2013, no. 9, pp. 1488–1497.

  23. Ingram-Jones, V.J., Davies, R.C.T., Southern, J.C., and Salvador, S., Dehydroxylation sequences of gibbsite and boehmite: study of differences between soak and flash calcinations and of particle-size effects, J. Mater. Chem., 1996, vol. 6, no. 1, pp. 73–79.

    Article  CAS  Google Scholar 

  24. Bolotov, V.A., Chernousov, Yu.D., Udalov, E.I., Tanashev, Yu.Yu., and Parmon, V.N., Microwave-driven high-temperature chemical reactions, Vestn. Nizhegorodsk. Gos. Univ., Ser.: Fiz., 2009, vol. 54, no. 2, pp. 78–83.

    Google Scholar 

  25. Gareth, R., O’Hare, W., and O’Hare, D., Towards understanding, control and application of layered double hydroxide chemistry, J. Mater. Chem., 2006, vol. 16, pp. 3065–3074.

    Article  CAS  Google Scholar 

  26. Krivoruchko, O.P., Larina, T.V., Anufrienko, V.F., Molina, I.Yu., and Paukshtis, E.A., Synthesis, electronic state, and particle size stabilization of nanoparticulate [Co(OH)2 \(({{{\text{H}}}_{{\text{3}}}}{\text{O}})_{\delta }^{ + }\)]δ+, Inorg. Mater., 2009, vol. 45, no. 12, pp. 1355–1361.

    Article  CAS  Google Scholar 

  27. Krivoruchko, O.P., Gavrilov, V.Yu., Molina, I.Yu., and Larina, T.V., Distribution of the cobalt-containing component in the pore space of HZSM-5 upon a postsynthetic modification of the zeolite with hydroxo compounds of Co2+, Kinet. Katal., 2008, vol. 49, no. 2, pp. 285–290.

    Article  CAS  Google Scholar 

  28. Casado, P.G. and Rasines, I., The series of spinels Co3 – sAls (0< s <2): study of CoAl2O4, J. Solid State Chem., 1984, vol. 52, pp. 187–190.

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by the Russian Federation Ministry of Education and Science (state research target for the Boreskov Institute of Catalysis, Siberian Branch, Russian Academy of Sciences, project no. AAAA-A17-117041710090-3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Zhuzhgov.

Additional information

Translated by O. Tsarev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhuzhgov, A.V., Krivoruchko, O.P., Larina, T.V. et al. Synthesis of Highly Dispersed 2D Aluminum Cobalt Oxyhydroxide Compounds Based on Microwave-Activation Products of Crystalline Gibbsite. Inorg Mater 55, 380–389 (2019). https://doi.org/10.1134/S0020168519040162

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168519040162

Keywords:

Navigation