Skip to main content
Log in

Microwave-Assisted Synthesis of YСохFe1 –хO3 Nanocrystals

  • Published:
Inorganic Materials Aims and scope

Abstract—

We propose microwave activation of the synthesis of yttrium ferrite doped with different cobalt concentrations. According to X-ray diffraction results, the synthesized YFeO3 and YСохFe1 –хO3 (with up to a 15% nominal doping level) are essentially free from impurity phases. The powders range in particle size from 20 to 60 nm (according to transmission electron microscopy data). Cobalt doping of YFeO3 raises the magnetic permeability of the material and broadens its hysteresis loop, which is due to an increase in spin–orbit interaction energy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Berry, F.J., Ren, X., Gancedo, J.R., and Marco, J.F., 57Fe Mössbauer spectroscopy study of LaFe1 – xCoxO3 (x = 0 and 0.5) formed by mechanical milling, Hyperfine Interact., 2004, vols. 156–157, nos. 1–4, pp. 335–340.

    Article  Google Scholar 

  2. Bazuev, G.V., Zaitseva, N.A., Krasil’nikov, V.P., and Kellerman D.G., Low-dimension complex oxides Sr4AMn2O9 (A = Zn, Mg): synthesis and magnetic properties, Russ. J. Inorg. Chem., 2003, vol. 48, no. 2, pp. 170–174.

    Google Scholar 

  3. Petrova, E., Kotsikau, D., and Pankov, V., Structural characterization and magnetic properties of sol–gel derived ZnxFe3 – xO4 nanoparticles, J. Magn. Magn. Mater., 2015, vol. 378, pp. 429–435. https://doi.org/10.1016/j.jmmm.2014.11.076

    Article  CAS  Google Scholar 

  4. Mittova, I.Ya., Tomina, E.V., Lapenko, A.A., and Khorokhordina, A.O., Solid-state reactions during thermal oxidation of vanadium-modified GaAs surfaces, Inorg. Mater., 2004, vol. 40, no. 5, pp. 441–444.

    Article  CAS  Google Scholar 

  5. Letyuk, L.M., Kostishin, V.G., and Gonchar, A.V., Tekhnologiya ferritovykh materialov magnitoelektroniki (Technology of Magnetoelectronic Ferrite Materials), Moscow: Mosk. Inst. Stali i Splavov, 2005.

  6. Reznichenko, L.A., Shilkina, L.A., Gagarina, E.S., et al., Crystallographic shear in niobium oxides of different compositions, Crystallogr. Rep., 2004, vol. 49, no. 5, pp. 820–827. https://doi.org/10.1134/1.1803313

    Article  CAS  Google Scholar 

  7. Kravchenko, O.Y., Gadzhiev, G.G., Omarov, Z.M., Reznichenko, L.A., Abdullaev, Kh.Kh., Razumovskaya, O.N., Shilkina, L.A., Komarov, V.D., and Verbenko, I.A., Phase composition, microstructure, and properties of Na1 – yNbO3 – y/2 ceramics, Inorg. Mater., 2011, vol. 47, no. 6, pp. 679–685.

    Article  CAS  Google Scholar 

  8. Tomina, E.V., Sladkopevtsev, B.V., Knurova, M.V., et al., Microwave synthesis and luminescence properties of YVO4:Eu3+, Inorg. Mater., 2016, vol. 52, no. 5, pp. 495–498. https://doi.org/10.1134/S0020168516050174

    Article  CAS  Google Scholar 

  9. Kuznetsova, V.A., Almjasheva, O.V., and Gusarov, V.V., Influence of microwave and ultrasonic treatment on the formation of CoFe2O4 under hydrothermal conditions, Glass Phys. Chem., 2009, vol. 35, no. 2, pp. 205–209.

    Article  CAS  Google Scholar 

  10. Tomina, E.V., Mittova, I.Ya., Burtseva, N.A., and Sladkopevtsev, B.V., RF Patent 2 548 089, 2015.

  11. Brandon, D.D. and Kaplan, W.D., Microstructural Characterization of Materials, London: Wiley, 1999.

    Google Scholar 

  12. Tret’yakov, Yu.D., Development of inorganic chemistry as a fundamental for the design of new generations of functional materials, Usp. Khim., 2004, vol. 74, no. 9, pp. 899–916.

    Article  CAS  Google Scholar 

  13. Housecroft, C.E. and Constable, E.C., Chemistry: An Introduction to Organic, Inorganic and Physical Chemistry, Harlow: Prentice Hall, 2001.

    Google Scholar 

  14. Dumestre, F., Chaudret, B., Amiens, C., et al., Shape control of thermodynamically stable cobalt nanorods through organometallic chemistry, Angew. Chem., Int. Ed., 2002, vol. 41, no. 22, pp. 4286–4289. https://doi.org/10.1002/anie.201304166

    Article  CAS  Google Scholar 

  15. Neorganicheskaya khimiya. Khimiya elementov (Inorganic Chemistry and Chemistry of Elements), Tret’yakov, Yu.D. et al., Eds., Moscow: Mosk. Gos. Univ., 2007.

  16. Bhat, I., Husain, S., Khan, W., and Patil, S.I., Effect of Zn doping on structural, magnetic and dielectric properties of LaFeO3 synthesized through sol–gel auto-combustion process, Mater. Res. Bull., 2013, vol. 48, pp. 4506–4512. https://doi.org/10.1016/j.materresbull.2013.07.028

    Article  CAS  Google Scholar 

  17. Shen, H., Xu, J., Wu, A., Zhao, J., and Shi, M., Magnetic and thermal properties of perovskite YFeO3 single crystals, Mater. Sci. Eng., B, 2009, vol. 157, pp. 77–80. https://doi.org/10.1016/j.mseb.2008.12.020

    Article  CAS  Google Scholar 

  18. Treves, D., Studies on orthoferrites at the Weizmann Institute of Science, J. Appl. Phys., 1965, vol. 36, pp. 1033–1038. https://doi.org/10.1063/1.1714088

    Article  CAS  Google Scholar 

  19. Moriya, T., New mechanism of anisotropic superexchange interaction, Phys. Rev. Lett., 1960, vol. 4, no. 5, pp. 228–230.

    Article  CAS  Google Scholar 

  20. Wei, Y., Gui, H., Zhao, Z., Li, J., Liu, Y., Xin, S., Li, X., and Xie, W., Structure and magnetic properties of the perovskite YCo0.5Fe0.5O3, AIP Adv., 2004, vol. 4, no. 12, paper 127 134. https://doi.org/10.1063/1.4904811

  21. Vonsovskii, V.S., Magnetizm (Magnetism), Moscow: Nauka, 1971.

    Google Scholar 

Download references

ACKNOWLEDGMENTS

This research was supported by the Russian Foundation for Basic Research, project no. 18-03-00354a.

In our work we used equipment at the Shared Research Facilities Center, Voronezh State University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. V. Tomina.

Additional information

Translated by O. Tsarev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tomina, E.V., Darinskii, B.M., Mittova, I.Y. et al. Microwave-Assisted Synthesis of YСохFe1 –хO3 Nanocrystals. Inorg Mater 55, 390–394 (2019). https://doi.org/10.1134/S0020168519040150

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168519040150

Keywords:

Navigation