Skip to main content
Log in

Electrorheological Properties of α-Bi2O3 and Bi2O2CO3

  • Published:
Inorganic Materials Aims and scope

Abstract—We have synthesized needle- and platelike α-Bi2O3 and Bi2O2CO3 nanoparticles. The bulk density of the α-Bi2O3 and Bi2O2CO3 powders is 8.5 and 6.9 g/cm3. The dielectric permittivity of α-Bi2O3 and Bi2O2CO3 has been calculated using dielectric permittivity and dielectric loss tangent dispersion measurements in the frequency range from 2.5 × 101 to 1 × 106 Hz for 40% suspensions (0.05 and 0.08 volume fractions of α-Bi2O3 and Bi2O2CO3, respectively) in PMS-300 polydimethylsiloxane. The value of ε has been found to be 5.4 for α-Bi2O3 and 4.9 for Bi2O2CO3. Dielectric spectra of the suspensions have been shown to exhibit no relaxation behavior in the frequency range studied. We have compared the effects of the shape and dielectric permittivity of the particles on the magnitude of the electrorheological effect in them. Using a simple polarization model, we have analyzed the effect of the dielectric characteristics of the filler material on the yield stress τ0 of the suspensions in electric fields from 0 to 4 kV/mm. Using a combination of rheometric and direct microscopic observations, we have explained the effect of the type of filler on the electrorheological effect: the Bi2O2CO3-based ERFs have higher shear and compressive yield stresses, whereas the α-Bi2O3-based ERFs have a higher tensile yield stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.

Similar content being viewed by others

REFERENCES

  1. Agafonov, A.V. and Zakharov, A.G., Electrorheological fluids, Russ. J. Gen. Chem., 2010, vol. 80, no. 3, pp. 567–575.

    Article  CAS  Google Scholar 

  2. Winslow, W.M., Induced fibration of suspensions, J. Appl. Phys., 1949, vol. 20, no. 12, pp. 1137–1140.

    Article  CAS  Google Scholar 

  3. Marshall, L., Zukoski, C.F., and Goodwin, J.W., Effects of electric fields on the rheology of non-aqueous concentrated suspensions, J. Chem. Soc., Faraday Trans. 1, 1989, vol. 85, no. 9, pp. 2785–2795.

    Article  CAS  Google Scholar 

  4. Lykov, A.V., Shul’man, Z.P., and Deinega, Yu.F., Elektroreologicheskii effekt (Electrorheological Effect), Minsk: Nauka i Tekhnika, 1972.

  5. Heyes, D.M. and Melrose, J.R., Brownian dynamics simulations of electrorheological fluids, II, Mol. Simul., 1990, vol. 5, no. 5, pp. 293–306.

    Article  Google Scholar 

  6. Mokeev, A.A. and Mokeev, A.A., An equation of motion of an electrorheological suspension, Mekh. Kompoz. Mater. Konstruktsii, 2000, vol. 6, no. 1, pp. 117–140.

    Google Scholar 

  7. Bonnecaze, R.T. and Brady, J.F., Dynamic simulation of an electrorheological fluid, J. Chem. Phys., 1992, vol. 96, no. 3, pp. 2183–2202.

    Article  CAS  Google Scholar 

  8. Martin, J.E. and Anderson, R.A., Chain model of electrorheology, J. Chem. Phys., 1996, vol. 104, no. 12, pp. 4814–4827.

    Article  CAS  Google Scholar 

  9. Tao, R. and Jiang, Q., Simulation of structure formation in an electrorheological fluid, Phys. Rev. Lett., 1994, vol. 73, no. 1, pp. 205–208.

    Article  CAS  PubMed  Google Scholar 

  10. Yanovskii, Yu.G. et al., Electrorheological fluids: theoretical and experimental approaches to describing them, Fiz. Mezomekh., 2003, vol. 6, no. 6, pp. 61–69.

    Google Scholar 

  11. Lu, J. and Zhao, X., Electrorheological properties of suspensions based on polyaniline–montmorillonite clay nanocomposite, J. Mater. Res., 2002, vol. 17, no. 6, pp. 1513–1519.

    Article  CAS  Google Scholar 

  12. Kim, S. et al., Electrorheological characteristics of phosphate cellulose-based suspensions, Polymer, 2001, vol. 42, no. 11, pp. 5005–5012.

    Article  CAS  Google Scholar 

  13. Kim, S.G. et al., Viscoelastic characterization of semiconducting dodecylbenzenesulfonic acid doped polyaniline electrorheological suspensions, J. Appl. Polym. Sci., 2001, vol. 79, no. 1, pp. 108–114.

    Article  CAS  Google Scholar 

  14. Zhao, X.P. and Duan, X., In situ sol–gel preparation of polysaccharide/titanium oxide hybrid colloids and their electrorheological effect, J. Colloid Interface Sci., 2002, vol. 251, no. 2, pp. 376–380.

    Article  CAS  PubMed  Google Scholar 

  15. Agafonov, A.V. et al., Nanocrystalline ceria: a novel material for electrorheological fluids, RSC Adv., 2016, vol. 6, no. 91, pp. 88 851–88 858.

  16. Liu, Y.D. et al., Fabrication of semiconducting polyaniline/nano-silica nanocomposite particles and their enhanced electrorheological and dielectric characteristics, Colloids Surf., A, 2011, vol. 381, nos. 1–3, pp. 17–22.

    Article  CAS  Google Scholar 

  17. Yukhin, Yu.M. and Mikhailov, Yu.I., Khimiya vismutovykh soedinenii i materialov (The Chemistry of Bismuth Compounds and Materials), Novosibirsk: Sib. Otd. Ross. Akad. Nauk, 2001.

  18. Egorysheva, A.V. et al., Targeted synthesis ultrafine α- and γ-Bi2O3 having different morphologies, Russ. J. Inorg. Chem., 2017, vol. 62, no. 11, pp. 1426–1434.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by the Russian Science Foundation, grant no. 16-13-10399. In our research, we used equipment at the Shared Physical Characterization Facilities Center, Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Egorysheva.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Egorysheva, A.V., Kraev, A.S., Gaitko, O.M. et al. Electrorheological Properties of α-Bi2O3 and Bi2O2CO3. Inorg Mater 55, 344–354 (2019). https://doi.org/10.1134/S0020168519030075

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168519030075

Keywords:

Navigation