Skip to main content
Log in

Morphology and Thermal Stability of Thin Cu1.8Se Films Produced by Chemical Deposition

  • Published:
Inorganic Materials Aims and scope

Abstract—

We have studied the morphology and thermal stability of thin Cu1.8Se films produced by hydrochemical deposition at 333 K using sodium selenosulfate. The crystal structure and phase composition of the films have been determined by X-ray diffraction and scanning electron microscopy. Heat treatment in the temperature range 453–563 K has been shown to change the phase composition and morphology of the copper(I) selenide films, as well as the size of their structural elements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Klochko, N.P., Khripunov, G.S., Volkova, N.D., Kopach, V.R., Momotenko, A.V., and Lyubov, V.N., Structure and properties of electrodeposited films and film stacks for precursors of kesterite and chalcopyrite solar cells, Semiconductors, 2014, vol. 48, no. 4, pp. 521–530. https://doi.org/10.1134/S1063782614040150

    Article  CAS  Google Scholar 

  2. Gosavi, S.R., Deshpande, N.G., Gudage, Y.G., and Sharma, R., Physical, optical and electrical properties of copper selenide (CuSe) thin films deposited by solution growth technique at room temperature, J. Alloys Compd., 2008, vol. 448, pp. 344–348. https://doi.org/10.1016/j.jallcom.2007.03.068

    Article  CAS  Google Scholar 

  3. Hankare, P.P., Khomane, A.S., Chate, P.A., Rathod, K.C., and Garadkar, K.M., Preparation of copper selenide thin films by simple chemical route at low temperature and their characterization, J. Alloys Compd., 2009, vol. 469, pp. 478–482. https://doi.org/10.1016/j.jallcom.2008.02.062

    Article  CAS  Google Scholar 

  4. Bari, R.H., Ganesan, V., Potadar, S., and Patil, L.A., Structural, optical and electrical properties of chemically deposited copper selenide films, Bull. Mater. Sci., 2009, vol. 32, pp. 37–42. https://doi.org/10.1007/s12034-009-0006-z

    Article  CAS  Google Scholar 

  5. Khomane, A.S., Synthesis and characterization of chemically deposited Cu2–xSe thin films, Arch. Appl. Sci. Res., 2012, vol. 4, pp. 1857–1863. http://scholarsresearchlibrary.com/archive.html.

    Google Scholar 

  6. Durdu, B.G., Alver, U., and Kucukonder, A., Investigation on zinc selenide and copper selenide thin films produced by chemical bath deposition, Acta Phys. Pol., A, 2013, vol. 124, pp. 41–45. https://doi.org/10.12693/APhysPolA.124.41

    Article  CAS  Google Scholar 

  7. Sandoval-Paz, M.G., Porcile-Saavedra, P.F., and Trejo-Cruz, C., Study of the crystallographic phase change on copper(I) selenide thin films prepared through chemical bath deposition by varying the pH of the solution, J. Solid State Chem., 2016, vol. 239, pp. 106–112. https://doi.org/10.1016/j.jssc.2016.04.026

    Article  CAS  Google Scholar 

  8. Mane, R.S., Kajve, S.P., Lokhande, C.D., and Han, S.-H., Studies on p-type copper(I) selenide crystalline thin films for hetero-junction solar cells, Vacuum, 2006, vol. 80, pp. 631–635. https://doi.org/10.1016/j.vacuum.2005.08.021

    Article  CAS  Google Scholar 

  9. Bhuse, V.M., Hankare, P.P., Garadkar, K.M., and Khomane, A.S., A simple, convenient, low temperature route to grow polycrystalline copper selenide thin films, Mater. Chem. Phys., 2003, vol. 80, pp. 82–88. https://doi.org/10.1016/S0254-0584(02)00306-1

    Article  CAS  Google Scholar 

  10. Al-Mamun Firoz, S.H. and Islam, A.B.M.O., Detection of crystal structure of chemically-deposited copper selenide thin films, Indian J. Phys. A, 2004, vol. 78, pp. 377–379.

    Google Scholar 

  11. Dhanam, M., Manoj, P.K., and Prabhu, R.R., High-temperature conductivity in chemical bath deposited copper selenide thin films, J. Cryst. Growth, 2005, vol. 280, pp. 425–435. https://doi.org/10.1016/j.jcrysgro.2005.01.111

    Article  CAS  Google Scholar 

  12. Pai, R.R., John, T.T., and Lakshmi, M., Observation of phase transitions in chemical bath deposited copper selenide thin films through conductivity studies, Thin Solid Films, 2005, vol. 473, pp. 208–212. https://org/ https://doi.org/10.1016/j.tsf.2004.04.020

  13. Danu Bernice Yram, Investigating the optical band gap and crystal structure of copper sulphide and copper selenide thin films deposited by chemical bath deposition, Dissertation, 2015.

  14. Maskaeva, L.N., Tulenin, S.S., Timina, A.A., Shemyakina, A.I., and Markov, V.F., Evaluation of formation conditions and synthesis of tin sulfide(II) thin films from solutions using thioacetamide and thiourea, Butlerov Commun., 2016, vol. 45, no. 3, pp. 72–79. roi jbc-02/16-45-3-72

  15. Maskaeva, L.N., Shemyakina, A.I., Markov, V.F., and Saryeva, R.Kh., Prognostication of chemical deposition conditions and morphology of nanostructured zinc sulfide films, Russ. J. Appl. Chem., 2015, vol. 88, no. 9, pp. 1417–1427. https://doi.org/10.1134/S1070427215090062

    Article  CAS  Google Scholar 

  16. Maskaeva, L.N., Glukhova, I.A., Markov, V.F., Tulenin, S.S., and Voronin, V.I., Nanostructured copper(I) sulfide films: synthesis, composition, morphology, and structure, Russ. J. Appl. Chem., 2016, vol. 89, no. 12, pp. 1939–1947. https://doi.org/10.1134/S107042721612003X

    Article  CAS  Google Scholar 

  17. Ivanov, A.A., Sorokin, A.I., Panchenko, V.P., Tarasova, I.V., Tabachkova, N.Yu., Bublik, V.T., and Akchurin, R.Kh., The structure of Cu2Se prepared by different methods, Semiconductors, 2017, vol. 51, no. 7, pp. 866–869. https://doi.org/10.21883/FTP.2017.07.44638.24

    Article  CAS  Google Scholar 

  18. Maskaeva, L.N., Markov, V.F., Fedorova, E.A., Berg, I.A., Samigullina, R.F., and Voronin, V.I., Structure and thermal stability of nanostructured precursor powders of copper(I) sulfide and selenide, Russ. J. Appl. Chem., 2017, vol. 90, no. 10, pp. 1572–1578. https://doi.org/10.1134/S1070427217100032

    Article  CAS  Google Scholar 

  19. Markov, V.F., Maskaeva, L.N., and Ivanov, P.N., Gidrokhimicheskoe osazhdenie plenok sul’fidov metallov: modelirovanie i eksperiment (Hydrochemical Growth of Metal Sulfide Films: Simulation and Experiment), Yekaterinburg: Ural’sk. Otd. Ross. Akad. Nauk, 2006.

  20. Tulenin, S.S., Maskaeva, L.N., Markov, V.F., and Kuznetsov, M.V., Deposition conditions, composition, and structure of chemically deposited In2Se3 films, Russ. J. Inorg. Chem., 2016, vol. 61, no. 4, pp. 488–495. https://doi.org/10.1134/S0036023616040227

    Article  CAS  Google Scholar 

  21. Fedorova, E.A., Maskaeva, L.N., Markov, V.F., and Mokrousova, O.A., Thermodynamic evaluation of the formation conditions Ga2Se3 by hydrochemical deposition, Butlerov Commun., 2015, vol. 42, no. 6, pp. 33–40. roi jbc-01/15-42-6-33

  22. Kvaratskheliya, R.K., Elektrokhimiya gidroksilamina (Electrochemistry of Hydroxylamine), Tbilisi: Metsniereba, 1981.

  23. Lur’e, Yu.Yu., Spravochnik po analiticheskoi khimii (Handbook of Analytical Chemistry), Moscow: Khimiya, 1989, 6th ed.

  24. Martell, A.E. and Hancock, R.D., Metal Complexes in Aqueous Solutions, New York: Plenum, 1996.

    Book  Google Scholar 

  25. Moysiadou, A., Koutsikou, R., and Bouroushian, M., Pulse electrodeposition of copper selenides from acidic aqueous baths, Mater. Lett., 2015, vol. 139, pp. 112–115. https://doi.org/10.1016/j.matlet.2014.10.036

    Article  CAS  Google Scholar 

  26. Cho, A., Ahn, S., Yun, J.H., Gwak, J., Ahn, S.K., Shin, K., Yoo, J., Song, H., and Yoon, K., The growth of Cu2 − xSe thin films using nanoparticles, Thin Solid Films, 2013, vol. 546, pp. 299–307. https://doi.org/10.1016/j.tsf.2013.02.037

    Article  CAS  Google Scholar 

  27. Kristl, M. and Kristl, J., Sonochemical process for the preparation of nanosized copper selenides with different phases, Chalcogenide Lett., 2014, vol. 11, pp. 59–66.

    Google Scholar 

  28. Balapanov, M.Kh., Ishembetov, R.Kh., Kuterbekov, K.A., and Yakshibaev, R.A., Thermoelectric and thermal properties of superionic AgxCu2 − xSe (x = 0.01, 0.02, 0.03, 0.04, 0.25) compounds, Lett. Mater., 2016, vol. 6, no. 4, pp. 360–365. https://doi.org/10.22226/2410-3535-2016-4-360-365

    Article  Google Scholar 

  29. Jin, Y., Han, M.-K., and Kim, S.-J., Na-doping effects on thermoelectric properties of Cu2 − xSe nanoplates, Appl. Sci., 2018, vol. 8, no. 12, pp. 1–10. https://doi.org/10.3390/app8010012

    Article  CAS  Google Scholar 

  30. Markov, V.F., Tulenin, S.S., Maskaeva, L.N., and Kuznetsov, M.V., Thermodynamic analysis of formation conditions and chemical deposition of solid solutions in the Cu2Se–In2Se3 system, Butlerov Soobshch., 2011, vol. 26, no. 12, pp. 29–36. roi jbc-01/11-26-12-29

  31. Asadov, Yu.G., Alyev, Yu.I., and Babaev, A.G., Polymorphic transformations of Cu2Se, Ag2Se, and AgCuSe and the role of partial cation–cation and anion–anion substitutions in stabilization of their polymorphs, Fiz. Elem. Chastits At. Yadra, 2015, vol. 46, no. 3, pp. 812–850.

    Google Scholar 

  32. Earley, J.W., Description and synthesis of the selenide minerals, Am. Mineral., 1950, vol. 35, pp. 337–364.

    CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by the Russian Federation Government (program no. 211, no. 02.A03.21.0006) and the Federal Agency for Scientific Organizations (theme “Flux” No. АААА-А18-118020190112-8) and was performed using equipment at the Unique Neutron Diffraction Facility, Neutron Scattering Materials Research Unit, Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. N. Maskaeva.

Additional information

Translated by O. Tsarev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fedorova, E.A., Maskaeva, L.N., Markov, V.F. et al. Morphology and Thermal Stability of Thin Cu1.8Se Films Produced by Chemical Deposition. Inorg Mater 55, 106–115 (2019). https://doi.org/10.1134/S0020168519020043

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168519020043

Keywords:

Navigation