Skip to main content
Log in

Electronic Structure and Ferromagnetic Transition Temperature of Ga1– xMnxAs in the Nonempirical Local Exchange Method

  • Published:
Inorganic Materials Aims and scope

Abstract

Density functional theory (DFT) calculations have been used to study the band structure and density of states of a Ga1 – xMnxAs diluted magnetic semiconductor. It has been shown that some of the Mn 3d states are hybridized with the valence band at the Fermi level. Magnetic properties have been calculated by a multiscale method using DFT densities of states and exchange integrals calculated for a Mn atom by the Hartree–Fock method. The theoretical ferromagnetic transition temperature TC of Ga0.9375Mn0.0625As agrees with experimental data.

Keywords:

spintronic materials, diluted magnetic semiconductor, GaAs, Mn, density functional method, density of states, band structure

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Ohno, H., Making nonmagnetic semiconductors ferromagnetic, Science, 1998, vol. 281, pp. 951–956.

    Article  CAS  PubMed  Google Scholar 

  2. Dietl, T., A ten-year perspective on dilute magnetic semiconductors and oxides, Nat. Mater., 2010, vol. 9, pp. 965–974.

    Article  CAS  PubMed  Google Scholar 

  3. Marenkin, S.F., Trukhan, V.M., Fedorchenko, I.V., Trukhanov, S.V., and Shelkovaya, T.V., Magnetic and electrical properties of Cd3As2 + MnAs composite, Russ. J. Inorg. Chem., 2014, vol. 59, no. 4, pp. 355–359.

    Article  CAS  Google Scholar 

  4. Marenkin, S.F., Izotov, A.D., Fedorchenko, I.V., and Novotortsev, V.M., Manufacture of magnetic granular structures in semiconductor–ferromagnet systems, Russ. J. Inorg. Chem., 2015, vol. 60, no. 3, pp. 295–300.

    Article  CAS  Google Scholar 

  5. Novotortsev, V.M., Kochura, A.V., and Marenkin, S.F., New ferromagnetics based on manganese-chalcopyrites AIIBIVCV 2, Inorg. Mater., 2010, vol. 46, no. 13, pp. 1421–1436.

    Article  CAS  Google Scholar 

  6. Nemšák, S., Gehlmann, M., Kuo, C.-T., Lin, S.-C., Schlueter, C., Mlynczak, E., Lee, T.-L., Plucinski, L., Ebert, H., Di Marco, I., Minár, J., Schneider, C.M., and Fadley, C.S., Element- and momentum-resolved electronic structure of the dilute magnetic semiconductor Ga1 – xMnxAs, Nat. Commun., 2018, vol. 9, paper 3306.

  7. Sato, K., Bergqvist, L., Kudrnovský, J., Dederichs, P.H., Eriksson, O., Turek, I., Sanyal, B., Bouzerar, G., Katayama-Yoshida, H., Dinh, V.A., Fukushima, T., Kizaki, H., and Zeller, R., First-principles theory of dilute magnetic semiconductors, Rev. Mod. Phys., 2010, vol. 82, pp. 1633–1690.

    Article  CAS  Google Scholar 

  8. Szwacki, G.N., Majewski, J.A., and Dietl, T., (Ga,Mn)As under pressure: a first-principles investigation, Phys. Rev. B: Condens Matter Mater. Phys., 2015, vol. 91, paper 184 409.

  9. Kudrnovsky, J., Drchal, V., and Turek, I., Exchange and spin–orbit induced phenomena in diluted (Ga,Mn)As from first principles, Phys. Rev. B: Condens Matter Mater. Phys., 2016, vol. 94, paper 054 428.

  10. Ruderman, M.A. and Kittel, C., Indirect exchange coupling of nuclear moments by conduction electrons, Phys. Rev., 1954, vol. 96, pp. 99–102.

    Article  CAS  Google Scholar 

  11. Dobrowolska, M., Tivakornsasithorn, K., Liu, X., Furdyna, J.K., Berciu, M., Yu, K.M., and Walukiewicz, W., Controlling the curie temperature in (Ga,Mn)As through location of the Fermi level within the impurity band, Nat. Mater., 2012, vol. 11, pp. 444–449.

    Article  CAS  PubMed  Google Scholar 

  12. Gray, A.X., Minar, J., Ueda, S., Stone, P.R., Yamashita, Y., Fujii, J., Braun, J., Plucinski, L., Schneider, C.M., Panaccione, G., Ebert, H., Dubon, O.D., Kobayashi, K., and Fadley, C.S., Bulk electronic structure of the dilute magnetic semiconductor Ga1 – x-MnxAs through hard X-ray angle-resolved photoemission, Nat. Mater., 2012, vol. 11, pp. 957–962.

    Article  CAS  PubMed  Google Scholar 

  13. Di Marco, I., Thunstro, P., Katsnelson, M.I., Sadowski, J., Karlsson, K., Lebegue, S., Kanski, J., and Eriksson, O., Electron correlations in MnxGa1 – xAs as seen by resonant electron spectroscopy and dynamical mean field theory, Nat. Commun., 2013, vol. 4, paper 2645.

  14. Souma, S., Chen, L., Oszwałdowski, R., Sato, T., Matsukura, F., Dietl, T., Ohno, H., and Takahashi, T., Fermi level position, Coulomb gap, and Dresselhaus splitting in (Ga,Mn)As, Sci. Rep., 2016, vol. 6, paper 27 266.

  15. Kobayashi, M., Muneta, I., Takeda, Y., Harada, Y., Fujimori, A., Krempasky, J., Schmitt, T., Ohya, S., Tanaka, M., Oshima, M., and Strocov, V.N., Unveiling the impurity band induced ferromagnetism in the magnetic semiconductor (Ga,Mn)As, Phys. Rev. B: Condens Matter Mater. Phys., 2014, vol. 89, paper 205 204.

  16. Burch, K.S., Shrekenhamer, D.B., Singley, E.J., Stephens, J., Sheu, B.L., Kawakami, R.K., Shiffer, P., Samarth, N., Awschalom, D.D., and Basov, D.N., Impurity bands in a high temperature ferromagnetic semiconductor, Phys. Rev. Lett., 2006, vol. 97, paper 087 208.

  17. Nemec, P., Nova, V., Tesarova, N., Rozkotova, E., Reichlova, H., Butkovicova, D., Trojanek, F., Olejn, K., Maly, P., Campion, R.P., Gallagher, B.L., Sinova, J., and Jungwirth, T., The essential role of carefully optimized synthesis for elucidating intrinsic material properties of (Ga,Mn)As, Nat. Commun., 2013, vol. 4, paper 2426.

  18. Ando, K., Saito, H., Agarwal, K.C., Debnath, M.C., and Zayets, V., Origin of the anomalous magnetic circular dichroism spectral shape in ferromagnetic Ga1 – x-MnxAs: impurity bands inside the band hap, Phys. Rev. Lett., 2008, vol. 100, paper 067 204.

  19. Tanaka, H., Jadwisienczak, W.M., Saito, H., Zayets, V., Yuase, S., and Ando, K., Localized spd exchange interaction in ferromagnetic Ga1 – xMnxAs observed by magnetic circular dichroism spectroscopy of L critical points, J. Phys. D: Appl. Phys., 2014, vol. 47, paper 355 001.

  20. Ohya, S., Takata, K., and Tanaka, M., Nearly non-magnetic valence band of the ferromagnetic semiconductor GaMnAs, Nat. Phys., 2011, vol. 7, pp. 342–347.

    Article  Google Scholar 

  21. Kanski, J., Ilver, L., Karlsson, K., Ulfat, I., Leandersson, M., Sadowski, J., and Di Marco, I., Electronic structure of (Ga,Mn)As revisited, New J. Phys., 2017, vol. 19, paper 023 006.

  22. Muneta, I., Ohya, S., Terada, H., and Tanaka, M., Sudden restoration of the band ordering associated with the ferromagnetic phase transition in a semiconductor, Nat. Commun., 2016, vol. 7, paper 12 013.

  23. Murashov, S.V., Yarzhemsky, V.G., Nefedov, V.I., and Murav’ev, E.N., Electronic structure of magnetic semiconductors Cd1 – xMnxGeAs2 and Cu1 – xMnxGaTe2, Russ. J. Inorg. Chem., 2007, vol. 52, no. 8, pp. 1243–1247.

    Article  Google Scholar 

  24. Yarzhemsky, V.G., Murashov, S.V., Nefedov, V.I., and Murav’ev, E.N., Electronic structure and chemical bonds in the magnetic semiconductors MnxCd1 – x-GeAs2 and MnxZn1 – xGeAs2, Inorg. Mater., 2008, vol. 44, no. 11, pp. 1169–1175.

    Article  CAS  Google Scholar 

  25. Yarzhemsky, V.G., Murashov, S.V., and Izotov, A.D., Electronic structure and exchange interaction in Ga1 – x-MnxAs and In1 – xMnxAs, Inorg. Mater., 2016, vol. 52, no. 2, pp. 89–93.

    Article  CAS  Google Scholar 

  26. Yarzhemsky, V.G., Murashov, S.V., and Izotov, A.D., Calculation of the electronic structure and exchange interaction in the InSb and GaAs semiconductors codoped with Mn and Ni, Inorg. Mater., 2017, vol. 53, no. 11, pp. 1131–1135.

    Article  CAS  Google Scholar 

  27. Anderson, P.W., Localized magnetic states in metals, Phys. Rev., 1961, vol. 124, pp. 41–53.

    Article  CAS  Google Scholar 

  28. Gonze, X., Jollet, F., Araujo, F.A., Adams, D., Amadon, B., et al., Recent developments in the ABINIT software package, Comput. Phys. Commun., 2016, vol. 205, pp. 106–131.

    Article  CAS  Google Scholar 

  29. Clark, S.J., Segall, M.D., Pickard, C.J., Hasnip, P.J., Probert, M.J., Refson, K., and Payne, M.C., First principles methods using CASTEP, Z. Kristallogr., 2005, vol. 220, nos. 5–6, pp. 567–570.

    CAS  Google Scholar 

  30. Kresse, G. and Hafner, J., Norm-conserving and ultrasoft pseudopotentials for first-row and transition-elements, J. Phys.: Condens. Matter, 1994, vol. 6, pp. 8245–8257.

    CAS  Google Scholar 

  31. Vanderbilt, D., Soft self-consistent pseudopotentials in a generalized eigenvalue formalism, Phys. Rev. B: Condens Matter Mater. Phys., 1990, vol. 41, pp. 7892–7895.

    Article  CAS  Google Scholar 

  32. Pela, R.R., Marques, M., and Teles, L.K., Comparing LDA-1/2, HSE03, HSE06 and G 0 W 0 approaches for band gap calculations of alloys, J. Phys.: Condens. Matter, 2015, vol. 27, no. 50, paper 505 502.

  33. Vurgaftman, I., Meyer, J.R., and Ram-Mohan, I.R., Band parameters for III–V compound semiconductors and their alloys, J. Appl. Phys., 2001, vol. 89, paper 5815.

  34. Amusia, M.Ya., Semenov, S.K., and Chernysheva, L.V., ATOM-M algoritmy i programmy issledovanii atomnykh i molekulyarnykh protsessov (ATOM-M Algorithms and Programs for Investigation of Atomic and Molecular Processes), St. Petersburg: Nauka, 2016.

  35. Amusia, M.Ya., Chernysheva, L.V., and Yarzhemsky, V.G., Handbook of Theoretical Atomic Physics, Berlin: Springer, 2012.

    Book  Google Scholar 

  36. Sobel’man, I.I., Vvedenie v teoriyu atomnykh spektrov (Introduction to the Theory of Atomic Spectra), Moscow: Nauka, 1977.

Download references

ACKNOWLEDGMENTS

The work was carried out within the State Assignment on Fundamental Research to the Kurnakov Institute of General and Inorganic Chemistry.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. G. Yarzhemsky.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yarzhemsky, V.G., Murashov, S.V. & Izotov, A.D. Electronic Structure and Ferromagnetic Transition Temperature of Ga1– xMnxAs in the Nonempirical Local Exchange Method. Inorg Mater 55, 1–8 (2019). https://doi.org/10.1134/S0020168519010187

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168519010187

Navigation