Skip to main content
Log in

Characteristic Features of Multilayer Photonic Bandgap Fiber Fabrication

  • Published:
Inorganic Materials Aims and scope

Abstract

We have demonstrated a modified chemical vapor deposition (MCVD) process for the fabrication of multilayer photonic bandgap fiber based on high-purity silica glass. Sequential growth of layers differing in melting point has been shown to lead to distortion of the layers in the resulting photonic bandgap structure and a sharp rise in optical loss as a result of deviations from Bragg’s reflection conditions. By optimizing the chemical composition of the layers in the photonic bandgap structure, we were able to suppress excessive optical losses and reach the optical loss limit, which is only determined by the guidance properties of the photonic bandgap structure itself.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Melekhin, V.N. and Manenkov, A.B., Dielectric tubes as a waveguide with small attenuation, J. Tech. Phys., 1968, vol. 38, pp. 2113–2115.

    Google Scholar 

  2. Yeh, P. and Yariv, A., Theory of Bragg fiber, J. Opt. Soc. Am., 1978, vol. 68, pp. 1196–1201.

    Article  Google Scholar 

  3. Bréchet, F., Roy, P., Marcou, J., and Pagnoux, D., Single-mode propagation into depressed-core-index photonic-bandgap fibre designed for zero-dispersion propagation at short wavelengths, Electron. Lett., 2000, vol. 36, no. 6, pp. 514–515.

    Article  Google Scholar 

  4. Fevrier, S., Viale, P., Gerome, F., Leproux, P., Roy, P., Blondy, J.M., Dussardier, B., and Monnom, G., Very large effective area singlemode photonic bandgap fibre, Electron. Lett., 2003, vol. 39, pp. 1240–1242.

    Article  Google Scholar 

  5. Février, S., Jamier, R., Blondy, J.-M., Semjonov, S.L., Likhachev, M.E., Bubnov, M.M., Dianov, E.M., Khopin, V.F., Salganskii, M.Y., and Guryanov, A.N., Low-loss singlemode large mode area all-silica photonic bandgap fiber, Opt. Express, 2006, vol. 14, pp. 562–569.

    Article  PubMed  Google Scholar 

  6. Likhachev, M.E., Levchenko, A.E., Bubnov, M.M., Fevrier, S., Jamier, R., Humbert, G., Salganskii, M.Yu., Khopin, V.F., and Guryanov, A.N., Low-loss dispersion-shifted solid-core photonic bandgap Bragg fiber, 33rd Eur. Conf. and Exhibition on Optical Communication (ECOC), Berlin: VDE, 2007, paper We 7.1.2.

  7. Dianov, E.M., Likhachev, M.E., and Février, S., Solid core photonic bandgap fibers for high power fiber lasers, IEEE Sel. Top. Quantum Electron., 2009, vol. 15, no. 1, pp. 20–29.

    Article  CAS  Google Scholar 

  8. Gaponov, D.A., Février, S., Devautour, M., Roy, P., Likhachev, M.E., Aleshkina, S.S., Salganskii, M.Y., Yashkov, M.V., and Guryanov, A.N., Management of the high-order mode content in large (40 μm) core photonic bandgap Bragg fiber laser, Opt. Lett., 2010, vol. 35, pp. 2233–2235.

    Article  CAS  PubMed  Google Scholar 

  9. Février, S., Gaponov, D., Devautour, M., Roy, P., Daniault, L., Hanna, M., Papadopoulos, D.N., Druon, F., Georges, P., Likhachev, M.E., Salganskii, M.Y., and Yashkov, M.V., Photonic bandgap fibre oscillators and amplifiers, Opt. Fiber Technol., 2010, vol. 16, no. 6, pp. 419–427.

    Article  CAS  Google Scholar 

  10. Daniault, L., Gaponov, D.A., Hanna, M., Février, S., Roy, P., Druon, F., Georges, P., Likhachev, M.E., Salganskii, M.Y., and Yashkov, M.V., High power femtosecond chirped pulse amplification in large mode area photonic bandgap Bragg fibers, Appl. Phys. B: Lasers Opt., 2011, vol. 103, no. 3, pp. 615–621.

    Article  CAS  Google Scholar 

  11. Aleshkina, S.S., Likhachev, M.E., Pryamikov, A.D., Gaponov, D.A., Denisov, A.N., Bubnov, M.M., Salganskii, M.Yu., Laptev, A.Yu., Guryanov, A.N., Uspenskii, Y.A., Popov, N.L., and Février, S., Very-large-mode-area photonic bandgap Bragg fiber polarizing in a wide spectral range, Opt. Lett., 2011, vol. 36, pp. 3566–3568.

    Article  CAS  PubMed  Google Scholar 

  12. Gaponov, D., Delahaye, H., Lavoute, L., Jossent, M., Salganskii, M., Likhachev, M., Hideur, A., Granger, G., and Février, S., High-energy self-frequency-shifted solitons in large mode area Bragg fiber pumped by 2 μm chirped pulse amplifier, in High-Brightness Sources and Light-Driven Interactions: OSA Technical Digest (online), Optical Society of America, 2018, paper MM2C.7.

  13. Aleshkina, S.S., Likhachev, M.E., Uspenskii, Yu.A., and Bubnov, M.M., Experimental and theoretical study of optical losses in straight and bent Bragg fibres, Kvantovaya Elektron. (Moscow), 2010, vol. 40, no. 10, pp. 893–898.

    Article  CAS  Google Scholar 

  14. Uspenskii, Yu.A., Popov, N.L., Likhachev, M.E., Aleshkina, S.S., and Bubnov, M.M., Leakage and bend losses in solid-core Bragg fibers, J. Opt. Soc. Am. B, 2015, vol. 32, pp. 1294–1308.

    Article  CAS  Google Scholar 

  15. Nagel, S.R., MacChesney, J.B., and Walker, K.L., An overview of the modified chemical vapor deposition (MCVD) process and performance, IEEE J. Quantum Electron., 1982, vol. 18, pp. 459–476.

    Article  Google Scholar 

  16. Kolesova, V.A. and Sher, E.S., GeO2–SiO2 binary glasses, Izv. Akad. Nauk SSSR, Neorg. Mater., 1973, vol. 9, no. 6, pp. 1018–1020.

    CAS  Google Scholar 

  17. Huang, Y.Y., Sarkar, A., and Schultz, P.C., Relationship between composition, density and refractive index for germania silica glasses, J. Non-Cryst. Solids, 1978, no. 27, pp. 29–37.

  18. Modone, E., Parisi, G., and Roba, G., Very low-loss and highly reproducible optical fibres by a pressurized MCVD method, Alta Freg., 1983, vol. 52, no. 2, pp. 98–102.

    Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by the Federal Agency for Scientific Organizations (state research target).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Yu. Salganskii.

Additional information

Translated by O. Tsarev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salganskii, M.Y., Khopin, V.F., Guryanov, A.N. et al. Characteristic Features of Multilayer Photonic Bandgap Fiber Fabrication. Inorg Mater 55, 85–89 (2019). https://doi.org/10.1134/S0020168519010096

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168519010096

Keywords:

Navigation