Skip to main content
Log in

High-Pressure Magnetic and Transport Properties of Zn0.1Cd0.9GeAs2 + n wt % MnAs (n = 10 or 15) Nanocomposites

  • Published:
Inorganic Materials Aims and scope

Abstract

The magnetic susceptibility χ(T) of Zn0.1Cd0.9GeAs2 + n wt % MnAs (n = 10 or 15) ferromagnetic nanocomposites with a Curie temperature TC = 310 K has been measured as a function of temperature in the temperature range 270–350 K, and their resistivity ρ(p), Hall coefficient RH(p), and magnetization M(p) have been measured as functions of pressure near room temperature. The materials have been shown to undergo a pressure-induced ferromagnetic-to-paramagnetic phase transition, accompanied by a semiconductor–metal phase transition, at a hydrostatic pressure p ≈ 3.2 GPa and room temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Kossut, J. and Dobrowolski, W., Handbook of Magnetic Materials, Amsterdam: North-Holland, 1993, pp. 231–305.

    Google Scholar 

  2. Dobrowolski, W., Kossut, J., and Story, T., Handbook of Magnetic Materials, Amsterdam: Elsevier, 2003, chapters 2–4, pp. 289–377.

    Google Scholar 

  3. Dietl, T., A ten-year perspective on dilute magnetic semiconductors and oxides, Nat. Mater., 2010, vol. 9, pp. 965–974.

    Article  CAS  PubMed  Google Scholar 

  4. Arslanov, T.R., Arslanov, R.K., Kilanski, L., Chatterji, T., Fedorchenko, I.V., Emirov, R.M., and Ril, A.I., Low-field-enhanced unusual hysteresis produced by metamagnetism of the MnP clusters in the insulating CdGeP2 matrix under pressure, Phys. Rev., 2016, vol. 94, paper 184 427.

  5. Arslanov, T.R., Mollaev, A.Yu., Kamilov, I.K., Arslanov, R.K., Kilanski, L., Trukhan, V.M., Chatterji, T., Marenkin, S.F., and Fedorchenko, I.V., Emergence of pressure-induced metamagnetic-like state in Mn-doped CdGeAs2 chalcopyrite, Appl. Phys. Lett., 2013, vol. 103, paper 192 403.

  6. Arslanov, R.K., Arslanov, T.R., Zalibekov, U.Z., and Fedorchenko, I.V., Transport and magnetic properties of Zn0.1Cd0.9GeAs2 + 10 wt % MnAs composite with magnetic clusters at high pressure, Phys. Solid State, 2017, vol. 59, no. 3, pp. 483–486.

    Article  CAS  Google Scholar 

  7. Kilanski, L., Zubiaga, A., Tuomisto, F., Dobrowolski, W., Domukhovski, V., Varnavskiy, S.A., and Marenkin, S.F., Native vacancy defects in Zn1 − x(Mn,Co)xGeAs2 studied with positron annihilation spectroscopy, J. Appl. Phys., 2009, vol. 106, paper 013 524.

  8. Kilanski, L., Górska, M., Dobrowolski, W., Dynowska, E., Wojcik, M., Kowalski, B.J., Anderson, J.R., Rotundu, C.R,. Maude, D.K., Varnavskiy, S.A., Fedorchenko, I.V., and Marenkin, S.F., Magnetism and magnetotransport of strongly disordered Zn1 − xMnxGeAs2 semiconductor: the role of nanoscale magnetic clusters, J. Appl. Phys., 2010, vol. 108, paper 073 925.

  9. Fedorchenko, I.V., Aronov, A.N., Kilanski, L., Domukhovski, V., Reszka, A., Kowalski, B.J., Lahderanta, E., Dobrowolski, W., Izotov, A.D., and Marenkin, S.F., Phase equilibria in the ZnGeAs2–CdGeAs2 system, J. Alloys Compd., 2014, vol. 599, pp. 121–126.

    Article  CAS  Google Scholar 

  10. Kilanski, L., Fedorchenko, I.V., Górska, M.A., Ślawska-Waniewska, A., Nedelko, N., Podgórni, A., Avdonin, A., Lähderanta, E., Dobrowolski, W., Aronov, A.N., and Marenkin, S.F., Magnetoresistance control in granular Zn1 – x – yCdxMnyGeAs2 nanocomposite ferromagnetic semiconductors, J. Appl. Phys., 2015, vol. 118, paper 103 906.

  11. Khvostantsev, L.G., Vereshagin, L.P., and Novikov, A.P., Device of Toroid type for high pressure generation, High Temp.–High Pressures, 1977, vol. 9, no. 6, pp. 637–639.

    Google Scholar 

  12. Arslanov, T.R., Kilanski, L., López-Moreno, S., Mollaev, A.Yu., Arslanov, R.K., Fedorchenko, I.V., Chatterji, T., Marenkin, S.F., and Emirov, R.M., Changes in the magnetization hysteresis direction and structure-driven magnetoresistance of a chalcopyrite-based magnetic semiconductor, J. Phys. D: Appl. Phys., 2016, vol. 49, paper 125 007.

  13. Song, J.H., Cui, Y., and Ketterson, J.B., Relationships between crystal structure and magnetic properties in type-A heteroepitaxial MnAs thin films, J. Appl. Phys., 2012, vol. 111, paper 07E125.

  14. Bolzan, M., Bergenti, I., Rossetto, G., Zanella, P., Dediu, V., and Natali, M., Growth and characterization of ferromagnetic MnAs films on different semiconductor substrates, J. Magn. Magn. Mater., 2007, vol. 316, pp. 221–224.

    Article  CAS  Google Scholar 

  15. Kilanski, L., Szałowski, K., Szymczak, R., Gorska, M., Dynowska, E., Aleshkevych, P., Podgorni, A., Avdonin, A., Dobrowolski, W., Fedorchenko, I.V., and Marenkin, S.F., Low-dilution limit of Zn1 − xMnxGeAs2: electrical and magnetic properties, J. Appl. Phys., 2013, vol. 114, paper 093 908.

Download references

ACKNOWLEDGMENTS

This work was supported by the Russian Foundation for Basic Research, project no. 16-02-00210 a.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. K. Arslanov.

Additional information

Translated by O. Tsarev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arslanov, R.K., Arslanov, T.R., Zalibekov, U.Z. et al. High-Pressure Magnetic and Transport Properties of Zn0.1Cd0.9GeAs2 + n wt % MnAs (n = 10 or 15) Nanocomposites. Inorg Mater 55, 96–100 (2019). https://doi.org/10.1134/S0020168519010011

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168519010011

Keywords:

Navigation