Skip to main content
Log in

Distribution of Stresses and Deformations in the Deformed Metal Volume at Indenting of a Spherical Indenter

  • MECHANICS OF MATERIALS: STRENGTH, RESOURCE, AND SAFETY
  • Published:
Inorganic Materials Aims and scope

Abstract

In this paper, we studied the distribution of stresses and deformations in a deformed metal under the indents obtained by indentation of a spherical indenter with a different degree of loading. For this purpose, the hardness method and the finite element method are used. These methods are shown to complement each other and their combined use gives more complete information on the values of stresses and strains in various zones of the deformed metal volume.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Johnson, K.L., Contact Mechanics, Cambridge: Cambridge Univ. Press, 1985.

    Book  Google Scholar 

  2. Giannakopoulos, A.E. and Suresh, S., Determination of elastoplastic properties by instrumented sharp indentation, Scr. Mater., 1999, vol. 40, no. 10, pp. 1191–1198.

    Article  CAS  Google Scholar 

  3. Savitskii, F.S., Vandyshev, B.A., and Yakutovich, M.V., Plastic strain distribution around the conical indent, Zavod. Lab., 1948, vol. 14, no. 12, pp. 1476–1479.

    Google Scholar 

  4. Markovets, M.P., Compilation of stress-strain diagrams of real stresses using the hardness values and technological sample test, Zh. Tekh. Fiz., 1949, vol. 19, no. 3, pp. 371–382.

    Google Scholar 

  5. Oka, Y.I., Matsumura, M., and Funaki, H., Measurements of plastic strain below an indentation and piling-up between two adjacent, Wear, 1995, vols. 186–187, part 1, pp. 50–55.

  6. Del’, G.D., Opredelenie napryazhenii v plasticheskoi oblasti po raspredeleniyu tverdosti (Determination of Stresses in Plastic Area Using the Hardness Method), Moscow: Mashinostroenie, 1971.

    Google Scholar 

  7. Chaudhri, M.M., Subsurface plastic strain distribution around spherical indentations in metals, Philos. Mag. A, 1996, vol. 74, no. 5, pp. 1213–1224.

    Article  CAS  Google Scholar 

  8. Matyunin, V.M., Indentirovanie v diagnostike mekhanicheskikh svoistv materialov (Use the Indentation in Diagnostics of Mechanical Properties of Material), Moscow: Mosk. Energ. Inst., 2015.

    Google Scholar 

  9. Chaudhri, M.M., Subsurface strain distribution around Vickers hardness indentations in annealed polycrystalline copper, Scr. Mater., 1998, vol. 46, no. 9, pp. 3047–3056.

    CAS  Google Scholar 

  10. Chaudhri, M.M., Subsurface deformation patterns around indentations in work-hardened mild-steel, Philos. Mag. Lett., 1993, vol. 67, pp. 107–115.

    Article  CAS  Google Scholar 

  11. Ludwig, P. and Scheu, R., Vergleichende Zug-, Druck- und Walzversuche, Stahl Eisen, 1925, vol. 45, pp. 373–381.

    Google Scholar 

  12. Bakirov, M.B., Zaitsev, M.A., and Frolov, I.V., Elastic half-space spherical indentation process CAD simulation, Zavod. Lab., Diagn. Mater., 2001, vol. 67, no. 1, pp. 37–47.

    Google Scholar 

  13. Cheng, Y. and Li, Z., Hardness obtained from conical indentations with various cone angles, J. Mater. Res., 2000, vol. 15, no. 12, pp. 2830–2835.

    Article  CAS  Google Scholar 

  14. Nolan, G., Scale effects in microindentation of ductile crystals, MSc Thesis, Boston: Mass. Inst. Technol., 2000.

  15. Koeppel, B.J. and Subhash, G., Characteristics of residual plastic zone under static and dynamic Vickers indentations, Wear, 1999, vol. 224, no. 1, pp. 56–67.

    Article  CAS  Google Scholar 

  16. Mesarovic, S.J. and Fleck, N.A., Spherical indentation of elastic-plastic solids, Proc. R. Soc. A, 1999, vol. 455, no. 1987, pp. 2707–2728.

  17. Biwa, S. and Storakers, B., An analysis of fully plastic Brinell, J. Mech. Phys. Solids, 1995, vol. 43, no. 8, pp. 1303–1333.

    Article  Google Scholar 

  18. Demiral, M., Roy, A., El Sayed, T., and Silberschmidt, V.V., Influence of strain gradients on lattice rotation in nano-indentation experiments: a numerical study, Mater. Sci. Eng. A, 2014, vol. 608, pp. 73–81.

    Article  CAS  Google Scholar 

  19. Kramer, D., Huang, H., Kriese, M., Robach, J., Nelson, A., Wright, A., Bahr, D., and Gerberich, W., Yield strength predictions from the plastic zone around nanocontacts, Acta Mater., 1998, vol. 47, no. 1, pp. 333–343.

    Article  Google Scholar 

  20. Matyunin, V.M., Dubov, A.A., and Marchenkov, A.Yu., Scale factor in determining the hardness of metal materials, Inorg. Mater., 2010, vol. 46, no. 15, pp. 1692–1695.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by the Russian Science Foundation, project no. 15-19-00166, and performed at the National Research University MPEI.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. M. Matyunin or A. G. Kazantsev.

Additional information

Translated by A. Ivanov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matyunin, V.M., Kazantsev, A.G. & Marchenkov, A.Y. Distribution of Stresses and Deformations in the Deformed Metal Volume at Indenting of a Spherical Indenter. Inorg Mater 54, 1517–1522 (2018). https://doi.org/10.1134/S0020168518150116

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168518150116

Keywords:

Navigation