Skip to main content
Log in

Electron Probe X-Ray Analysis of Nanofilms at Off-Normal Incidence of the Electron Beam

  • ANALYSIS OF SUBSTANCES
  • Published:
Inorganic Materials Aims and scope

Abstract

The frontier of the electron probe X-ray spectral method in the determination of trace metal quantities on a silicon substrate is studied. The experimental data are acquired for ultrathin chromium films on a silicon substrate. It is shown that the signal-to-noise ratio significantly increases at a noticeable sample inclination (80°), which allows one to determine an extremely low (available by this approach) chromium content. The calibration curve for the inclined sample position is plotted using the Monte Carlo method. The surface concentration of chromium atoms (2.2 ± 0.4) × 1014 cm–2 and the chromium detection limit (5 × 1013 cm–2) are measured under the given experimental conditions. For the electron probe X-ray microanalysis of bulk samples, it is a record value. The equivalent weight of chromium at the aforementioned surface concentration is approximately 4 × 10–18 g. The proposed technique requires no changes in the design of the device to be applied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Opila, R.L. and Eng, J., Jr., Thin films and interfaces in microelectronics: composition and chemistry as function of depth, Prog. Surf. Sci., 2002, vol. 69, no. 4, pp. 125–163.

    Article  CAS  Google Scholar 

  2. Podgornyi, D.A., Smetyukhova, T.N., and Irzhak, A.V., Determination of the thickness of ultrathin films by using Auger electron spectroscopy, Zavod. Lab., Diagn. Mater., 2012, vol. 78, no. 8, pp. 33–36.

    CAS  Google Scholar 

  3. Senoner, M. and Unger, W.E.S., SIMS imaging of the nanoworld: applications in science and technology, J. Anal. At. Spectrom., 2012, vol. 27, no. 7, pp. 1050–1068.

    Article  CAS  Google Scholar 

  4. Chu, W.K. and Liu, J.R., Rutherford backscattering spectrometry: reminiscences and progresses, Mater. Chem. Phys., 1996, vol. 46, nos. 2–3, pp. 183–188.

  5. Campos, C.S., et al., Thickness determination of ultra-thin films on Si substrates by EPMA, Microchim. Acta, 2004, vol. 145, no. 1–4, pp. 13–17.

  6. Procop, M. et al., Electron probe microanalysis (EPMA) measurement of thin-film thickness in the nanometre range, Anal. Bioanal. Chem., 2002, vol. 374, no. 4, pp. 631–634.

    Article  CAS  PubMed  Google Scholar 

  7. Llovet, X. and Merlet, C. Electron probe microanalysis of thin films and multilayers using the computer program XFILM, Microsc. Microanal., 2010, vol. 16, no. 1, pp. 21–32.

    Article  CAS  PubMed  Google Scholar 

  8. Bakaleinikov, L.A. et al., Depth profiling of semiconductor structures by x-ray microanalysis using the electron probe energy variation technique, Semiconductors, 2009, vol. 43, no. 4, pp. 544–549.

    Article  CAS  Google Scholar 

  9. Popova, T.B. et al., Electron probe microanalysis of heterostructures with nanolayers, Semiconductors, 2011, vol. 45, no. 2, pp. 260–264.

    Article  CAS  Google Scholar 

  10. Gavrilenko, V.P. et al., Electron probe measurements of oxide film thickness on silicon surfaces, Meas. Tech., 2015, vol. 58, no. 9, pp. 953–957.

    Article  CAS  Google Scholar 

  11. Tsuji, K., Grazing-exit electron probe x-ray microanalysis (GE-EPMA): fundamental and applications, Spectrochim. Acta, Part B, 2005, vol. 60, no. 11, pp. 1381–1391.

    Article  CAS  Google Scholar 

  12. Wendt, M., Krajewski, T., and Bimberg, R., Detection of thin surface films by electron beam microanalysis. A comparison between wavelength-dispersive and energy-dispersive microprobes, Phys. Status Solidi A, 1976, vol. 36, no. 1, pp. 253–261.

    Article  CAS  Google Scholar 

  13. Pouchou, J.L., Pichoir, F., and Boivin, D., Further improvements in quantitation procedures for X-ray microanalysis, Proc. XII Int. Symp. on X-Ray Optics and Microanalysis, Cracow: Acad. Min. Metall., 1990, pp. 52–59.

  14. Wendt, M., Electron probe microanalysis of thin films at variable angle of incidence, Fresenius’ J. Anal. Chem., 1991, vol. 340, pp. 193–196.

    Article  CAS  Google Scholar 

  15. Joy, D.C., Monte Carlo Modeling for Electron Microscopy and Microanalysis, New York: Oxford Univ. Press, 1995.

    Google Scholar 

  16. Reimer, L. and Krefting, E.R., The effect of scattering models on the result of Monte-Carlo calculations, Proc. Workshop “Use of Monte Carlo Calculations in Electron Probe Microanalysis and Scanning Electron Microscopy,” Gaithersburg, Maryland, October 1–3, 1975, Washington: US Govt. Print. Off., 1976, no. 460, pp. 45–60.

  17. Llovet, X. et al., Cross sections for inner-shell ionization by electron impact, J. Phys. Chem. Ref. Data, 2014, vol. 43, no. 1, art. ID 013102.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by the Russian Science Foundation (agreement no. 14-19-01652 from June 27, 2014).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S. A. Darznek or M. N. Filippov.

Additional information

Translated by O. Maslova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Darznek, S.A., Mityukhlyaev, V.B., Todua, P.A. et al. Electron Probe X-Ray Analysis of Nanofilms at Off-Normal Incidence of the Electron Beam. Inorg Mater 54, 1417–1420 (2018). https://doi.org/10.1134/S0020168518140066

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168518140066

Keywords:

Navigation