Skip to main content
Log in

Contemporary Methods of Detecting Heavy Metals in Waste Waters (Review)

  • ANALYSIS OF SUBSTANCES
  • Published:
Inorganic Materials Aims and scope

Abstract

The necessity of monitoring the quality of waste waters and their specific features require the presence, development, and improvement of an instrumental analytic base, as well as the implementation of methods of detecting pollutants, including heavy metals. This review article characterizes methods of elemental atomic absorption, optical emission, and mass-spectral ecoanalytical monitoring of waste waters, which are of greatest practical interest. Particular attention is paid to methods using operations on separating and concentrating trace heavy metals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Akinin, N.I., Promyshlennaya ekologiya. Printsipy, podkhody, tekhnicheskie resheniya (Industrial Ecology: Principles, Approaches, and Technical Solutions), Dolgoprudnyi: Intellekt, 2011.

  2. Danilovich, D.A. and Dovlatova, E.V., Proposals to change the legislative framework of rationing of water utilities and their customers wastewater discharges, Vodosnabzh. Sanit. Tekh., 2012, no. 10, pp. 5–9.

  3. Kutseva, N.K., Kartashova, A.V., and Chamaev, A.V., Water quality standards: the analyst’s view, Metody Otsenki Sootvetstviya, 2012, no. 3, pp. 4–9.

  4. Gnipov, A.V., Mazaev, V.T., and Khromchenko, Ya.L., About the control of drinking water quality and composition of the wastewater in the new regulations, Vodosnabzh. Sanit. Tekh., 2015, no. 4, pp. 4–11.

  5. Moore, J.W. and Ramamoorthy, S., Heavy Metals in Natural Waters. Applied Monitoring and Impact Assessment, New York: Springer-Verlag, 1984.

    Book  Google Scholar 

  6. Ivanov, V.V., Ekologicheskaya geokhimiya elementov (Ecological Geochemistry of Elements), Moscow: Nauka, 1994, book 1, pp. 16–17.

  7. Yusfin, Yu.S., Leont’ev, L.I., and Chernousov, P.I., Promyshlennost’ i okruzhayushchaya sreda (Industry and Environment), Moscow: Akademkniga, 2002.

    Google Scholar 

  8. Gron’, V.A., Korostovenko, V.V., and Kaplichenko, N.M., Monitoring of pollution of the hydrosphere by metallurgical enterprise, Mezhdunar. Zh. Eksp. Obraz., 2013, no. 10-2, pp. 309–311.

  9. PND F 14.1:2.214-06 (FR.1.31.2007.03809). Kolichestvennyi khimicheskii analiz vod. Metodika vypolneniya izmerenii massovoi kontsentratsii zheleza, kadmiya, kobal’ta, margantsa, nikelya, medi, khroma i svintsa v probakh prirodnykh i stochnykh vod metodom plamennoi atomno-absorbtsionnoi spektrometrii (PND F 14.1:2.214-06 (FR.1.31.2007.03809). Quantitative Chemical Analysis of Water. Methods for Measuring the Mass Concentration of Iron, Cadmium, Cobalt, Manganese, Nickel, Copper, Zinc, Chromium, and Lead in Samples of Natural and Waste Waters by Flame Atomic Absorption Spectrophotometry), Moscow, 2006.

  10. PND F 14.1:2.4.253-09. Method for Determination of Mass Concentration of Aluminum, Barium, Beryllium, Vanadium, Cadmium, Cobalt, Manganese, Copper, Molybdenum, Arsenic, Nickel, Lead, Selenium, Silver, Strontium, Titanium, Chromium, Zinc in the Samples of Natural and Waste Waters by Atomic Absorption Spectrometry with Graphite Furnace Atomization Using Atomic Absorption Spectrometry Modifications MGA-915, 915M, 915 MD, St. Petersburg, 2009

  11. Zolotov, Yu.A., Tsizin, G.I., Dmitrienko, S.G., and Morosanova, E.I., Sorbtsionnoe kontsentrirovanie mikrokomponentov iz rastvorov. Primenenie v neorganicheskom analize (Sorption Concentration of Microcomponents from Solutions: Implementation in Inorganic Analysis), Moscow: Nauka, 2010.

    Google Scholar 

  12. Yilmaz, V. and Kartal, S., Determination of some trace metals by FAAS after solid-phase extraction with amberlite XAD-1180/TAN chelating resin, Anal. Sci., 2012, vol. 28, no. 5, pp. 515–21.

    Article  CAS  PubMed  Google Scholar 

  13. Sert, R., Hol, A., Kartal, A.A., et al., Simultaneous solid phase chelate extraction for ultratrace determination of copper, nickel, and zinc by microsample injection system coupled flame atomic absorption spectrometry, Anal. Lett., 2013, vol. 46, no. 16, pp. 2570–2582.

    Article  CAS  Google Scholar 

  14. Mori, M., Suzuki, T., Sugita, Ts., et al., Heavy metal adsorptivity of calcium-alginate-modified diethylenetriamine-silica gel and its application to a flow analytical system using flame atomic absorption spectrometry, Anal. Chim. Acta, 2014, vol. 840, pp. 42–48.

    Article  CAS  PubMed  Google Scholar 

  15. Meng, L., Chen, C., and Yang, Y., Suspension dispersive solid phase extraction for preconcentration and determination of cobalt, copper, and nickel in environmental water by flame atomic absorption spectrometry, Anal. Lett., 2015, vol. 48, no. 3, pp. 453–463.

    Article  CAS  Google Scholar 

  16. Shemshadi, R.Sh., Zeinalov, N.A., Efendiev, A.A., et al., Determination of cadmium and zinc in waters by flame atomic absorption spectrometry after cloud-point extraction, J. Anal. Chem., 2012, vol. 67, no. 6, pp. 577–580.

    Article  CAS  Google Scholar 

  17. Babuev, M.A., Basargin, N.N., Arslanbeikov, R.Kh., et al., Sorption-atomic-absorption determination of cadmium (II) in natural waters, Zavod. Lab., Diagn. Mater., 2011, vol. 77, no. 8, pp. 3–5.

    Google Scholar 

  18. Anthemidis, A.N. and Paschalidou, M., Unmodified multi-walled carbon nanotubes as sorbent material in flow injection on-line sorbent extraction preconcentration system for cadmium determination by flame atomic spectrometry, Anal. Lett., 2012, vol. 45, no. 9, pp. 1098–1110.

    Article  CAS  Google Scholar 

  19. Doroshchuk, V.A. and Kulichenko, S.A., Preconcentration of cadmium with OP-10 nonionic surfactant phases at the cloud point, J. Anal. Chem., 2005, vol. 60, no. 5, pp. 400–403.

    Article  CAS  Google Scholar 

  20. Hazer, O. and Demir, D., Speciation of chromium in water samples by solid-phase extraction on a new synthesized adsorbent, Anal. Sci., 2013, vol. 29, no. 7, pp. 29–34.

    Article  Google Scholar 

  21. Baig, J., Hol, A., Akdogan, A., et al., A novel strategy for chromium speciation at ultra-trace level by microsample injection flame atomic absorption spectrophotometry, J. Anal. At. Spectrom., 2012, vol. 27, no. 9, pp. 1509–1517.

    Article  CAS  Google Scholar 

  22. Shah, F., Soylak, M., Kazi, T.G., and Afridi, H.I., Preconcentration of lead from aqueous solution with activated carbon cloth prior to analysis by flame atomic absorption spectrometry: A multivariate study, J. Anal. At. Spectrom., 2013, vol. 28, no. 4, pp. 601–605.

    Article  CAS  Google Scholar 

  23. Bai, H., Zhou, Q., Xie, G., and Xiao, J., Temperature-controlled ionic liquid–liquid-phase microextraction for the pre-concentration of lead from environmental samples prior to flame atomic absorption spectrometry, Talanta, 2010, vol. 80, no. 5, pp. 1638–1642.

    Article  CAS  PubMed  Google Scholar 

  24. Aida, I., Daryoush, A., Ali, M., and Maryam, F., Ultrasound-assisted emulsification microextraction for separation of trace amounts of antimony prior to FAAS determination, Microchim. Acta, 2012, vol. 176, no. 1–2, pp. 185–192.

  25. Ulusoy, H.İ., Akcay, M., Ulusoy, S., and Gürkan, R., Determination of ultra trace arsenic species in water samples by hydride generation atomic absorption spectrometry after cloud point extraction, Anal. Chim. Acta, 2011, vol. 703, no. 2, pp. 137–144.

    Article  CAS  PubMed  Google Scholar 

  26. Pourreza, N. and Ghanemi, K., Determination of mercury in water and fish samples by cold vapor atomic absorption spectrometry after solid phase extraction on agar modified with 2-mercaptobenzimidazole, J. Hazard. Mater., 2009, vol. 161, nos. 2–3, pp. 982–987.

  27. Matusiewicz, H. and Krawczyk, M., Determination of total mercury by vapor generation in situ trapping flame atomic absorption spectrometry, Chem. Anal., 2008, vol. 53, no. 6, pp. 905–925.

  28. Oreshkin, V.N. and Tsizin, G.I., Three-chamber atomizer with two zones for the evaporation for atomic absorption analysis of natural waters and slurries, Zavod. Lab., Diagn. Mater., 2010, vol. 76, no. 10, pp. 14–18.

    CAS  Google Scholar 

  29. Oreshkin, V.N. and Tsizin, G.I., Graphite furnace atomic absorption determination of elements in natural waters and suspensions after concentrates separation on membrane filters, Zavod. Lab., Diagn. Mater., 2013, vol. 79, no. 3, pp. 18–20.

    CAS  Google Scholar 

  30. Donati, G.L., Wildman, R.B., and Jones, B.T., A new atomization cell for trace metal determinations by tungsten coil atomic spectrometry, Anal. Chim. Acta, 2011, vol. 688, no. 1, pp. 36–42.

    Article  CAS  PubMed  Google Scholar 

  31. Temerdashev, Z.A., Burylin, M.Yu., and Veligodskii, I.M., Graphite furnace atomic absorption determination of volatile elements using permanent modifier on a carbonized base, Zavod. Lab., Diagn. Mater., 2009, vol. 75, no. 11, pp. 18–22.

    CAS  Google Scholar 

  32. Safarova, V.I., Shaidulina, G.F., Mikheeva, T.N., et al., Determination of Se, As, Sb, Te, and Bi in wastewaters of mining-and-processing integrated works with the use of AAS-ETA, Inorg. Mater., 2011, vol. 47, no. 14, pp. 1500–1504.

    Article  CAS  Google Scholar 

  33. López-García, I., Rivas, R.E., and Hernández-Córdoba, M., Use of carbon nanotubes and graphite furnace atomic absorption spectrometry for the speciation of very low amounts of arsenic and antimony in waters, Talanta, 2011, vol. 86, pp. 52–57.

  34. Baig, J.A., Kazi, T.G., Shah, A.Q., et al., Optimization of cloud point extraction and solid phase extraction methods for speciation of arsenic in natural water using multivariate technique, Anal. Chim. Acta, 2009, vol. 651, no. 1, pp. 57–63.

    Article  CAS  PubMed  Google Scholar 

  35. Pabieh, S., Bagheri, M., and Planer-Friedrich, B., Speciation of arsenite and arsenate by graphite furnace AAS flowing ionic liquid dispersive liquid/liquid microextraction, Microchim. Acta, 2013, vol. 180, nos. 5–6, pp. 415–421.

  36. Mahnaz, G., Reza, K.-Z.M., Ali, Y.Y.E., and Najmeh, Y., Preconcentration and speciation of arsenic in water specimens by the combination of solidification of floating drop microextraction and graphite furnace atomic absorption spectrometry, Talanta, 2010, vol. 81, no. 1–2, pp. 197–201.

  37. Dal’nova, O.A., Dmitrieva, A.P., Ivannikova, N.V., et al., GFAAS determination of mercury in demercuration solutions, Zavod. Lab., Diagn. Mater., 2012, vol. 78, no. 6, pp. 5–8.

    Google Scholar 

  38. Mojtaba, Sh. and Saeed, H., A highly sensitive procedure for determination of ultra trace amounts of molybdenum by graphite furnace atomic absorption spectrometry after dispersive liquid-liquid microextraction, Microchim. Acta, 2010, vol. 171, nos. 3–4, pp. 267–273.

  39. Mashkoure, N.N., Hamed, T., Reza, A., and Shahram, S., Speciation and determination of ultra trace amount of inorganic tellurium in environmental water samples by dispersive liquid-liquid microextraction and graphite furnace atomic absorption spectrometry, Anal. Chim. Acta, 2010, vol. 670, nos. 1–2, pp. 18–23.

  40. Pupyshev, A.A., The high-resolution continuum source atomic absorption spectrometers, Anal. Kontrol’, 2008, vol. 12, nos. 3–4, pp. 64–92.

  41. Pesa-Vázquez, E., Barciela-Alonso, M.C., Pita-Calvo, C., et al., Use of high-resolution continuum source flame atomic absorption spectrometry (HR-CS FAAS) for sequential multi-element determination of metals in seawater and wastewater samples, J. App. Spectrosc., 2015, vol. 82, no. 4, pp. 681–686.

  42. Zhao, L., Zhong, S., Fang, K., et al., Determination of cadmium (II), cobalt (II), nickel (II), lead (II), zinc (II), and copper (II) in water samples using dual-cloud point extraction and inductively coupled plasma emission spectrometry, J. Hazard. Mater., 2012, vols. 239–240, pp. 206–212.

  43. Kubrakova, I.V., Koshcheeva, I.Ya., Pryazhnikov, D.V., et al., Microwave synthesis, properties and analytical possibilities of magnetitebased nanoscale sorption materials, J. Anal. Chem., 2014, vol. 69, no. 4, pp. 336–346.

    Article  CAS  Google Scholar 

  44. Mashhadizadeh, M.H. and Karami, Z., Solid phase extraction of trace amounts of Ag, Cd, Cu, and Zn in environmental samples using magnetic nanoparticles coated by 3-(trimethoxysilyl)-1-propantiol and modified with 2-amino-5-mercapto-1,3,4-thiadiazole and their determination by ICP-OES, J. Hazard. Mater., 2011, vol. 190, nos. 1–3, pp. 1023–1029.

  45. Faraji, M., Yamini, Y., Saleh, A., et al., A nanoparticle-based solid-phase extraction procedure followed by flow injection inductively coupled plasma-optical emission spectrometry to determine some heavy metal ions in water samples, Anal. Chim. Acta, 2010, vol. 659, nos. 1–2, pp. 172–177.

  46. Cheng, G., He, M., Peng, H., and Hu, B., Dithizone modified magnetic nanoparticles for fast and selective solid phase extraction of trace elements in environmental and biological samples prior to their determination by ICP-OES, Talanta, 2012, vol. 88, pp. 507–515.

    Article  CAS  PubMed  Google Scholar 

  47. Knápek, J., Komárek, J., and Novotný, K., Determination of cadmium, chromium and copper in high salt samples by LA-ICP-OES after electrodeposition—preliminary study, Microchim. Acta, 2010, vol. 171, nos. 1–2, pp. 145–150.

  48. Schiavo, D., Trevizan, L.C., Pereira-Filho, E.R., and Nubrega, J.A., Evaluation of the use of multiple lines for determination of metals in water by inductively coupled plasma optical emission spectrometry with axial viewing, Spectrochim. Acta, Part B, 2009, vol. 64, no. 6, pp. 544–548.

    Article  CAS  Google Scholar 

  49. Toropov, L.I., Mal’tsev, A.A., and Lyskova, T.M., Study of conditions of heavy metals optical emission determination of in water bodies, Zavod. Lab., Diagn. Mater., 2014, vol. 80, no. 5, pp. 19–22.

    CAS  Google Scholar 

  50. Meeravali, N.N., Madhavi, K., and Kumar, S.J., A sensitive sequential non-chromatographic speciation analysis of chromium in natural/wastewaters by inductively coupled plasma optical emission spectrometry, J. Anal. At. Spectrom., 2011, vol. 26, no. 1, pp. 214–219.

    Article  CAS  Google Scholar 

  51. Bashilov, A.V. and Rogova, O.B., Optical emission spectrometry of microwave plasma: positioning, advantages and limitations, Zavod. Lab., Diagn. Mater., 2014, vol. 80, no. 5, pp. 23–28.

    CAS  Google Scholar 

  52. Karandashev, V.K., Orlova, T.A., and Lezhnev, A.E., Opredelenie elementnogo sostava prirodnykh i pit’evykh vod metodom ICP MS. Metodika kolichestvennogo khimicheskogo analiza. Instruktsiya NSAM no. 480-Kh (Determination of the Elemental Composition in Natural and Drinking Water by ICP-MS. Quantitative Chemical Analysis: Instruction NSAM No. 480-Kh), Moscow: Vseross. Nauchno-Issled. Inst. Miner. Syr’ya, 2006.

    Google Scholar 

  53. Karandashev, V.K., Orlova, T.A., and Lezhnev, A.E., Determination of Total Mercury in Natural and Drinking Water by ICP-MS: Instructions NSAM No. 480-Kh, Moscow: Vseross. Nauchno-Issled. Inst. Miner. Syr’ya, 2006.

    Google Scholar 

  54. Cui, C., Peng, H., Zhang, Y., Nan, K., et al., , 2015, vol. 30, no. 6, pp. 1386–1394.

  55. Su, C., Zee, T., and Sun, Y., On-line solid phase extraction using a PVC-packed minicolumn coupled with ICP-MS for determination of trace multielements in complicated matrices, J. Anal. At. Spectrom., 2012, vol. 27, no. 9, pp. 1585–1590.

    Article  CAS  Google Scholar 

  56. Guo, X., He, M., Chen, B., and Hu, B., Solidified floating organic drop microextraction combined with ETV-ICP-MS for the determination of trace heavy metals in environmental water samples, Talanta, 2012, vol. 94, pp. 70–76.

    Article  CAS  PubMed  Google Scholar 

  57. Bueno Cotta, A.J. and Enzweiler, J., Quantification of major and trace elements in water samples by ICP-MS and collision cell to attenuate Ar and Cl-based polyatomic ions, J. Anal. At. Spectrom., 2009, vol. 24, no. 10, pp. 1406–1413.

    Article  CAS  Google Scholar 

  58. Issa, N.B., Rajaković-Ognjanović, V.N., Marinković, A.D., and Rajaković, L.V., Separation and determination of arsenic species in water by selective exchange and hybrid resins, Anal. Chim. Acta, 2011, vol. 706, no. 1, pp. 191–198.

    Article  CAS  PubMed  Google Scholar 

  59. Chen, Z.L., Megharaj, M., and Naidu, R., Speciation of chromium in waste water using ion chromatography inductively coupled plasma mass spectrometry, Talanta, 2007, vol. 72, no. 2, pp. 394–400.

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS

This study was supported by the Russian Foundation for Basic Research (grant no. 16-03-00843) and Increase Competitiveness Program of MISiS (no. P02-2017-2-7).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. A. Dal’nova.

Additional information

Translated by D. Zabolotny

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dal’nova, O.A., Bebeshko, G.I., Es’kina, V.V. et al. Contemporary Methods of Detecting Heavy Metals in Waste Waters (Review). Inorg Mater 54, 1397–1406 (2018). https://doi.org/10.1134/S0020168518140042

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168518140042

Keywords:

Navigation