Skip to main content
Log in

Oxidative Dehydrogenation of Ethane on Oxide Materials in a Pulsed Microcatalytic and a Membrane Reactor

  • Published:
Inorganic Materials Aims and scope

Abstract

This paper presents a study of oxidative dehydrogenation of ethane (ODHE) on nanostructured single-component and multicomponent catalysts based on V5+, Mo5+, and Nb5+ oxides and produced on alumina by molecular layering. It has been shown that the molybdenum-containing catalysts exhibit higher activity for ODHE in both single-component and binary samples and ensure higher ethylene selectivity. We have demonstrated advantages of ODHE on membrane–catalyst systems in the form of asymmetric ceramic tubes, with catalysts placed inside of them. The membrane–catalyst systems produced by molecular layering offer considerably higher activity and selectivity in ODHE.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Zimmermann, H. and Walzl, R., in Ullmann’s Encyclopedia of Industrial Chemistry, Weinheim: Wiley–VCH, 2000.

    Google Scholar 

  2. James, O.O., Mandal, S., Alele, N., Chowdhury, B., and Maity, S., Lower alkanes dehydrogenation: strategies and reaction routes to corresponding alkenes, Fuel Process. Technol., 2016, vol. 149, pp. 239–255.

    Article  CAS  Google Scholar 

  3. Gryaznov, V.M., Metal containing membranes for the production of ultra-pure hydrogen and the recovery of hydrogen isotopes, Sep. Purif. Rev., 2000, vol. 29, pp. 171–187.

    Article  CAS  Google Scholar 

  4. Drioli, E., Stankievicz, A.I., and Macedonian, F., Membrane engineering in process intensification—an overview, J. Membr. Sci., 2011, vol. 380, pp. 1–8.

    Article  CAS  Google Scholar 

  5. Thomas, S., Hamel, C., and Seidel-Morgenstern, A., Basic problems of chemical reaction engineering and potential of membrane reactors, Membrane Reactors: Distributing Reactants to Improve Selectivity and Yield, Seidel-Morgenstern, A., Ed., Weinheim: Wiley–VCH, 2010, chapter 1.

  6. Orekhova, N.V., Kustov, L.M., Kucherov, A.V., Finashina, E.D., Ermilova, M.M., and Yaroslavtsev, A.B., Membrane catalytic systems for Na C2–C4 alkanes conversion, Nanotechnol. Russ., 2012, vol. 7, pp. 560–574.

    Article  Google Scholar 

  7. Coronas, J., Menendez, V., and Santamaria M., Use of a ceramic membrane reactor for the oxidative dehydrogenation of ethane to ethylene and higher hydrocarbons, Ind. Eng. Chem. Res., 1995, vol. 34, pp. 4229–4234.

    Article  CAS  Google Scholar 

  8. Guo, Y., Lu, G., Wang, Y., and Wang, R., Preparation and characterization of Pd–Ag/ceramic composite membrane and application to enhancement of catalytic dehydrogenation of isobutane, Sep. Purif. Technol., 2003, vol. 32, pp. 271–279.

    Article  CAS  Google Scholar 

  9. Yolucular, S., Pd/Al2O3 composite membranes for the production of pure hydrogen, Energy Sources, Part A, 2010, vol. 32, pp. 1437–1445.

    Google Scholar 

  10. Medrano, J-A., Julian, I., Herguido, J., and Menendez, M., Pd–Ag membrane coupled to two-zone fluidized bed reactor (TZFBR) for propane dehydrogenation on a Pt–Sn/MgAl2O4 catalyst, Membranes, 2013, vol. 3, pp. 68–86.

    Article  CAS  Google Scholar 

  11. Peters, T.A., Liron, O., Tschentscher, R., Sheintuch, M., and Bredesen, R., Investigation of Pd-based membranes in propane dehydrogenation (PDH) processes, Chem. Eng. J., 2016, vol. 305, pp. 191–200.

    Article  CAS  Google Scholar 

  12. Didenko, L.P., Sementsova, L.A., Chizhov, P.E., and Bikov, L.A., Catalytic dehydrogenation of propane in a membrane reactor with Pd–6%In–0.5%Ru and Pd–6%Ru foils, Mater., Methods Technol., 2016, vol. 10, pp. 305–312.

    Google Scholar 

  13. Chu, B., Truter, L., Nijhuis, T.A., and Cheng, Yi., Oxidative dehydrogenation of ethane to ethylene over phase-pure M1 MoVNbTeO catalysts in a micro-channel reactor, Catal. Sci. Technol., 2015, vol. 5, pp. 2807–2813.

    Article  CAS  Google Scholar 

  14. Gaffney, A.M. and Mason, O.M., Ethylene production via oxidative dehydrogenation of ethane using M1 catalyst, Catal. Today, 2017, vol. 285, pp. 159–165.

    Article  CAS  Google Scholar 

  15. Solsona, B., Dejoz, A., Garcia, T., Concepcion, P., Lopez Nieto, J.M., Vazquez, M.I., and Navarro, M.T., Molybdenum–vanadium supported on mesoporous alumina catalysts for the oxidative dehydrogenation of ethane, Catal. Today, 2006, vol. 117, pp. 228–233.

    Article  CAS  Google Scholar 

  16. Nguyen, T.T., Aouine, M., and Millet, J.M.M., Optimizing the efficiency of MoVTeNbO catalysts for ethane oxidative dehydrogenation to ethylene, Catal. Commun., 2012, vol. 21, pp. 22–26.

    Article  CAS  Google Scholar 

  17. Valente, J.S., Armendáriz-Herrera, H., Quintana-Solórzano, R., Del Ángel, P., Nava, N., Massó, A., and López Nieto, J.M., Chemical, structural, and morphological changes of a MoVTeNb catalyst during oxidative dehydrogenation of ethane, ACS Catal., 2014, vol. 4, pp. 1292–1301.

    Article  CAS  Google Scholar 

  18. Che-Galicia, G., Quintana-Solórzano, R., Ruiz-Martínez, R.S., Valente, J.S., and Castillo-Araiza, C.O., Kinetic modeling of the oxidative dehydrogenation of ethane to ethylene over a MoVTeNbO catalytic system, Chem. Eng. J., 2014, vol. 252, pp. 75–88.

    Article  CAS  Google Scholar 

  19. Blom, D.A., Vogt, T., Allard, L.F., and Buttrey, D.J., Observation of sublattice disordering of the catalytic sites in a complex Mo–V–Te–O oxidation catalyst using high temperature STEM imaging, Top. Catal., 2014, vol. 57, pp. 1138–1144.

    Article  CAS  Google Scholar 

  20. Xiong, G. and Sang, J., Oxidative dehydrogenation of propane over nanodiamond modified by molybdenum oxide, J. Mol. Catal. A: Chem., 2014, vol. 392, pp. 315–320.

    Article  CAS  Google Scholar 

  21. Chu, B., An, H., Chen, X., and Cheng Yi, Phase-pure M1 MoVNbTeOx catalysts with tunable particle size for oxidative dehydrogenation of ethane, Appl. Catal., A, 2016, vol. 524, pp. 56–65.

  22. Kazemeini, M., Nikkhah, M., Fattahi, M., and Yafajoo, L., Physicochemical properties and catalytic performance of nanostructured V2O5 over TiO2 for oxidative dehydrogenation of propane, Chem. Biochem Eng., 2016, vol. 30, pp. 9–18.

    Article  CAS  Google Scholar 

  23. Bai, P., Ma, Z., Li, T., Zhang, Z., Zhong, Z., Xing, W., Wu, P., Liu, X., and Yan, Z., Relationship between surface chemistry and catalytic performance of mesoporous γ-Al2O3 supported VOx catalyst in catalytic dehydrogenation of propane, ACS Appl. Mater. Interfaces, 2016, vol. 8, no. 39, pp. 25 979–25 990.

  24. Brussino, P., Bortolozzi, J.P., Milt, V.G., Banus, E.D., and Ulla, M.A., NiCe/ γ-Al2O3 coated onto cordierite monoliths applied to oxidative dehydrogenation of ethane, Catal. Today, 2016, vol. 273, pp. 259–265.

    Article  CAS  Google Scholar 

  25. Neal, L.M., Yusuf, S., Sofranko, J.A., and Li, F., Oxidative dehydrogenation of ethane: a chemical looping approach, Energy Technol., 2016, vol. 4, pp. 1200–1208.

    Article  CAS  Google Scholar 

  26. Caro, J., Membrane distributor, Encyclopedia of Membranes, Drioli, E. and Giorno, L., Eds., Berlin: Springer, 2015. doi 10.1007/978-3-642-40871-4_718-5

    Google Scholar 

  27. Balachandran, U. (Balu), Lee, T.H., Dorris, S.E., Udovich, C.A., Scouten, C.G., and Marshall, C.L., Novel membrane technology for green ethylene production, Clean Technol., 2008. www.ct-si.org, ISBN 978-1-4200-8502-0.

    Google Scholar 

  28. Rodriguez, M.L., Ardissone, D., Heracleous, E., Lemonidou, A., Lopez, E., Pedernera, M.N., and Borio, D.O., Oxidative dehydrogenation of ethane to ethylene in a membrane reactor. A theoretical study, Catal. Today, 2010, vol. 157, pp. 303–309.

    Article  CAS  Google Scholar 

  29. Kustov, L.M., Kucherov, A.V., Kucherova, T.N., Finashina, E.D., and Isaeva, V.I., RF Patent 2 358 958, 2013.

  30. Kustov, L.M., Kucherov, A.V., Kucherova, T.N., Finashina, E.D., and Isaeva, V.I., RF Patent 2 400 298, 2014.

  31. Lobera, M.P., Valero, S., Serra, J.M., Escolastico, S., Argente, E., and Botti, V., Optimization of ODHE membrane reactor based on mixed ionic electronic conductor using soft computing techniques, Chem. Eng. Sci., 2011, vol. 66, pp. 6308–6317.

    Article  CAS  Google Scholar 

  32. Dalmon, J.-A., Cruz-Lopez, A., Farrusseng, D., Guilhaume, N., Iojoiu, E., Jalibert, J.-C., Miachon, S., Mirodatos, C., Pantazidis, A., Rebeilleau-Dassonneville, M., Schuurman, Y., and van Veen, A.C., Oxidation in catalytic membrane reactors, Appl. Catal., A, 2007, vol. 325, pp. 198–204.

  33. Malygin, A.A., Malkov, A.A., and Dubrovenskii, S.D., The chemical basis of surface modification technology of silica and alumina by molecular layering method, Adsorption on New and Modified Inorganic Sorbents, Dabrowski, A. and Tertykh, V.A., Eds., Amsterdam: Elsevier, 1996, p. 213.

    Google Scholar 

  34. Malygin, A.A., Malkov, A.A., Mikhaylovskiy, S.V., Dubrovensky, S.D., Basov, N.L., Ermilova, M.M., Orekhova, N.V., and Tereschenko, G.F., Membranes prepared via molecular layering method, in Membranes for Membrane Reactors: Preparation, Optimization and Selection, London: Wiley, 2011, chapter 13, p. 357.

  35. Ermilova, M.M., Orekhova, N.V., Tereshchenko, G.F., Malygin, A.A., Malkov, A.A., Basile, A., and Gallucci, F., Methanol oxidative dehydrogenation on nanostructured vanadium-containing composite membranes, J. Membr. Sci., 2008, vol. 317, pp. 88–95.

    Article  CAS  Google Scholar 

  36. Malygin, A.A., Malkov, A.A., and Sosnov, E.A., Structural–dimensional effects and their application in the “core–nanoshell” systems synthesized by the molecular layering, Russ. Chem. Bull. Int. Ed., 2017, vol. 66, no. 11, pp. 1939–1962.

    Article  CAS  Google Scholar 

  37. Mikhailovskii, S.V., Zhilyaeva, N.A., Obletsova, A.A., Ermilova, M.M., Orekhova, N.V., Malygin, A.A., and Yaroslavtsev, A.B., Effect of the composition of (Mo, Nb, V, Ti)/γ-Al2O3 surface oxide structures on the oxidative dehydrogenation of ethane to ethylene, Russ. J. Appl. Chem., 2016, vol. 89, no. 1, pp. 34–39.

    Article  CAS  Google Scholar 

  38. Ermilova, M., Kucherov, A., Orekhova, N., Finashina, E., Kustov, L., and Yaroslavtsev, A., Ethane oxidative dehydrogenation to ethylene in a membrane reactor with asymmetric ceramic membranes, Chem. Eng. Process.: Process Intensification, 2018, vol. 126, pp. 150–155.

    Article  CAS  Google Scholar 

  39. Mikhailovskii, S.V., Chernov, A.S., Mironova, E.Yu., Ermilova, M.M., Orekhova, N.V., and Malygin, A.A., Effect of the composition and structure of the surface layer on the functional properties of core(Al2O3)–shell(VOx/TiOy) composite, Russ. J. Appl. Chem., 2014, vol. 87, no. 1, pp. 23–30.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The work performed at the Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences (the studies of conventional and membrane catalysts and their physicochemical studies) was supported by the Federal Agency for Scientific Organizations of Russia (state research target). The work performed at the St. Petersburg State Technological Institute (Technical University) (the fabrication of the catalysts and membranes by the molecular layering method) was supported by the Russian Federation Ministry of Education and Science (state research target, project no. 16.1798.217/4.6). In our studies, we used equipment at the Novel Petrochemical Processes, Polymer Composites, and Adhesives Shared Research Facilities Center, Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, and the Shared Physical Characterization Facilities Center, Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. A. Zhilyaeva.

Additional information

Translated by O. Tsarev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhilyaeva, N.A., Ermilova, M.M., Orekhova, N.V. et al. Oxidative Dehydrogenation of Ethane on Oxide Materials in a Pulsed Microcatalytic and a Membrane Reactor. Inorg Mater 54, 1136–1143 (2018). https://doi.org/10.1134/S002016851811016X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S002016851811016X

Keywords:

Navigation