Skip to main content
Log in

Preparation of Indium Phosphide Substrates for Epilayer Growth

  • Published:
Inorganic Materials Aims and scope

Abstract

We have carried out an integrated study of technological steps in the preparation of indium phosphide substrates for the epitaxial growth of heterostructures. We have investigated the surface morphology and condition of indium phosphide in (100)-oriented substrates and tested various chemical etchants for final chemical surface processing. Our results demonstrate that an optimal substrate preparation process is two-step chemical–mechanical polishing on both sides using zeolite slurries, with chemical polishing in a mixture of bromine and isopropanol as the final step.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Norman, A.G., Seong, T.-Y., Ferguson, I.T., Booker, G.R., and Joyce, B.A., Structural studies of natural superlattices in group III–V alloy epitaxial layers, Semicond. Sci. Technol., 1993, vol. 8, no. 1, pp. S9–S15.

    Article  CAS  Google Scholar 

  2. Ekerdt, J.G., Sun, Y.-M., Szabo, A., Szulczewski, G.J., and White, J.M., Role of surface chemistry in semiconductor thin film processing, Chem. Rev., 1996, vol. 96, pp. 1499–1517.

    Article  CAS  PubMed  Google Scholar 

  3. George, S.M., Ott, A.W., and Klaus, J.W., Surface chemistry for atomic layer growth, J. Phys. Chem., 1996, vol. 100, pp. 13 121–13 131.

  4. Belkin, M.E. and Vasil’ev, M.G., Semiconductor laser emitters with a high average-power bandwidth product, Nano- Mikrosist. Tekh., 2008, no. 98, pp. 23–33.

  5. Sladkopevtcev, B.V., Zolotukhina, E.V., Tomina, E.V., and Mittova, I.Ya., The XPS investigations of the surface composition of nanoscale films formed by thermal oxidation of VxOy/InP heterostructures, Nanosyst.–Phys. Chem. Math., 2017, vol. 8, no. 4, pp. 523–530. doi 10.17586/2220-8054-2017-8-4-523-530

    CAS  Google Scholar 

  6. Tretyakov, N.N., Mittova, I.Ya., Sladkopevtsev, B.V., Agapov, B.L., Pelipenko, D.I., and Mironenko, S.V., Surface morphology, composition, and structure of nanofilms grown on InP in the presence of V2O5, Inorg. Mater., 2015, vol. 51, no. 7, pp. 655–660. doi 10.1134/S002016851507016X

    Article  CAS  Google Scholar 

  7. Boyarskaya, Yu.S., Grabko, D.Z., Medinskaya, M.I., and Palistrant, N.A., Mechanical properties of pure and doped InP crystals under local load, Fiz. Tekh. Poluprovodn. (S.-Peterburg), 1997, vol. 31, no. 2, pp. 179–183.

  8. Woodruff, D.P. and Delchar, T.A., Modern Techniques of Surface Science, Cambridge: Cambridge Univ., 1986.

    Google Scholar 

  9. Vishnyakov, G.N. and Tsel’mina, I.Yu., Quality of optical surfaces treated with optical polyurethanes, Opt. Zh., 2012, no. 12, pp. 68–71.

  10. Vasil’ev, M.G., Vasil’ev, A.M., and Shelyakin, A.A., Planar buried crescent InP/InGaAsP/InP heterostructure on p-InP, Inorg. Mater., 2008, vol. 44, no. 9, pp. 913–917.

    Article  CAS  Google Scholar 

  11. Vasil’ev, M.G., Vasil’ev, A.M., and Shelyakin, A.A., High-power InP/GaInAsP buried heterostructure semiconductor laser with a modulation band of up to 10 GHz, Inorg. Mater., 2010, vol. 46, no. 9, pp. 1013–1018.

    Article  CAS  Google Scholar 

  12. Vasil’ev, M.G. and Kalacheva, T.S., Advances in semiconductor lasers emitting in the range 1.5–1.7 μm, Elektron. Tekh., 1982, vol. 11, no. 3, pp. 86–102.

    Google Scholar 

  13. Griffiths, J.E., Schwartz, G.P., Sunder, W.A., and Schonhorn, H., Comments on “Thermal oxidation of InP and properties of oxide film,” J. Appl. Phys., 1982, vol. 53, no. 3, pp. 1833–1834. https://doi.org/ 10.1063/1.330602.

    Article  Google Scholar 

  14. Vasil’ev, M.G., Vasil’ev, A.M., Golovanov, V.V., and Shelyakin, A.A., Fabrication and spectral characteristics of a laser diode for remote sensing of methane, Inorg. Mater., 2016, vol. 52, no. 9, pp. 872–875. doi 10.1134/S0020168516090168

    Article  CAS  Google Scholar 

  15. Vasil’ev, M.G., Vasil’ev, A.M., Kostin, Yu.O., Shelyakin, A.A., and Izotov, A.D., Buried crescent InP/InGaAsP/InP heterostructure on p-InP for edge-emitting diodes, Inorg. Mater., 2017, vol. 53, no. 11, pp. 1170–1173. doi 10.1134/S0020168517110164

    Article  Google Scholar 

  16. Vasil’ev, M.G., Vasil’ev, A.M., Izotov, A.D., and Shelyakin, A.A., High-temperature buried heterostructure laser diode emitting at 1310 nm, Inorg. Mater., 2014, vol. 50, no. 9, pp. 888–891. doi 10.1134/S0020168514090167

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by the Russian Federation Ministry of Education and Science (state research target for the Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences) and in part by the Presidium of the Russian Academy of Sciences (program no. I.35: Scientific Principles of Creating Novel Functional Materials).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. G. Vasil’ev.

Additional information

Translated by O. Tsarev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vasil’ev, M.G., Vasil’ev, A.M., Izotov, A.D. et al. Preparation of Indium Phosphide Substrates for Epilayer Growth. Inorg Mater 54, 1109–1112 (2018). https://doi.org/10.1134/S0020168518110158

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168518110158

Keywords:

Navigation