Skip to main content
Log in

Activation Energy and Mechanism of the Molybdenum Disilicide Sintering Process

  • Published:
Inorganic Materials Aims and scope

Abstract

This paper presents dilatometric analysis data for the sintering of off-the-shelf molybdenum disilicide (MoSi2) powder prepared by magnesiothermic synthesis. We have obtained continuous shrinkage curves for MoSi2 powder compacts with an initial relative density of 70% at different heating rates: 5, 10, 20, and 30°C/min. From a quantitative analysis of densification curves for the compacts, the activation energy for the initial stage of sintering has been determined to be Q = 695 kJ/mol. It has been shown that the dominant process in the initial stage of MoSi2 powder sintering is volume diffusion from grain boundaries and surfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Samsonov, G.V., Dvorina, L.A., and Rud’, B.M., Silitsidy (Silicides), Moscow: Metallurgiya, 1979, p. 271.

    Google Scholar 

  2. Gladyshevskii, E.I., Kristallokhimiya silitsidov i germanidov (Crystal Chemistry of Silicides and Germanides), Moscow: Metallurgiya, 1971, p. 156.

    Google Scholar 

  3. Melsheimer, S., Oxidation of the intermetallics MoSi2 and TiSi2, Comparison, 1997, vol. 47, nos. 1–2, pp. 139–203.

    CAS  Google Scholar 

  4. Titov, D.D., Lysenkov, A.S., Kargin, Y.F., Gorshkov, V.A., Goldberg, M.A., and Petrakova, N.V., Low-temperature oxidation of MoSi2–Si3N4 composites, Inorg. Mater.: Appl. Res., 2016, vol. 7, no. 4, pp. 624–629.

    Article  Google Scholar 

  5. Abbasian, A.R., Rahimipour, M.R., and Hamnabard, Z., Initial sintering kinetics of lithium meta titanate at constant rates of heating, Iranian J. Mater. Sci. Eng., 2013, vol. 10, no. 3, pp. 44–53.

    CAS  Google Scholar 

  6. Trusova, E.A., Khrushchev, A.A., Vokhmintcev, K.V., and Titov, D.D., Dilatometric sintering study of fine-grained ceramics from ultradispersed admixture composed of Ce0.09Zr0.91O2 and MgO–Al2O3, J. Eur. Ceram. Soc., 2013, vol. 33, no. 12, pp. 2327–2333.

    Article  CAS  Google Scholar 

  7. Mazaheri, M., Simchi, A., Dourandish, M., and Golestani-Fard, F., Master sintering curves of a nanoscale 3Y-TZP powder compacts, Ceram. Int., 2009, vol. 35, no. 2, pp. 547–554.

    Article  CAS  Google Scholar 

  8. Bernard-Granger, G. and Guizard, C., Apparent activation energy for the densification of a commercially available granulated zirconia powder, J. Am. Ceram. Soc., 2007, vol. 90, no. 4, pp. 1246–1250.

    Article  CAS  Google Scholar 

  9. Chen, L., Dilatometric analysis of sintering of tungsten and tungsten with ceria and hafnia dispersions, Refract. Met. Hard Mater., 1993, vol. 12, no. 1, pp. 41–51.

    Article  Google Scholar 

  10. Kingery, W.D. and Berg, M., Study of the initial stages of sintering solids by viscous flow, evaporation–condensation, and self-diffusion, J. Appl. Phys., 1955, vol. 26, no. 10, pp. 1205–1212.

    Article  CAS  Google Scholar 

  11. Coble, R.L., Initial sintering of alumina and hematite, J. Am. Ceram. Soc., 1958, vol. 41, no. 2, pp. 55–62.

    Article  CAS  Google Scholar 

  12. Johnson, D.L. and Cutler, I.B., Diffusion sintering: initial stage sintering models and their application to shrinkage of powder compacts, J. Am. Ceram. Soc., 1963, vol. 46, no. 11, pp. 541–545.

    Article  CAS  Google Scholar 

  13. Geguzin, Ya.E., Fizika spekaniya (The Physics of Sintering), Moscow: Nauka, 1967, p. 360.

    Google Scholar 

  14. Bakunov, V.S., Belyakov, A.V., Lukin, E.S., and Shayakhmetov, U.Sh., Oksidnaya keramika: spekanie i polzuechest’ (Oxide Ceramics: Sintering and Creep), Moscow: Ross. Khim. Tekhnol. Univ. im. D.I. Mendeleeva, 2007, p. 584.

    Google Scholar 

  15. Young, W.S. and Cutler, I.B., Initial sintering with constant rates of heating, J. Am. Ceram. Soc., 1970, vol. 53, no. 12, pp. 659–663.

    Article  CAS  Google Scholar 

  16. Wang, J. and Raj, R., Estimate of the activation energies for boundary diffusion from rate-controlled sintering of pure alumina, and alumina doped with zirconia or titania, J. Am. Ceram. Soc., 1990, vol. 73, no. 5, pp. 1172–1175.

    Article  CAS  Google Scholar 

  17. Wang, J. and Raj, R., Activation energy for the sintering of two-phase alumina/zirconia ceramics, J. Am. Ceram. Soc., 1991, vol. 74, no. 8, pp. 1959–1963.

    Article  CAS  Google Scholar 

  18. Matsui, K., Ohmichi, N., Ohgai, M., Enomoto, N., and Hojo, J., Sintering kinetics at constant rates of heating: effect of Al2O3 on the initial sintering stage of fine zirconia powder, J. Am. Ceram. Soc., 2005, vol. 88, no. 12, pp. 3346–3352.

    Article  CAS  Google Scholar 

  19. Matsui, K., Tanaka, K., Enomoto, N., and Hojo, J., Sintering kinetics at constant rates of heating: effect of alumina on the initial sintering stage of yttria-stabilized cubic zirconia powder, J. Ceram. Soc. Jpn., 2006, vol. 114, no. 1333, pp. 763–768.

    Article  CAS  Google Scholar 

  20. Matsui, K., Sintering kinetics at constant rates of heating: mechanism of silica-enhanced sintering of fine zirconia powder, J. Am. Ceram. Soc., 2008, vol. 91, no. 8, pp. 2534–2539.

    Article  CAS  Google Scholar 

  21. Suárez, G. and Sakka, Y., Effect of alumina addition on initial sintering of cubic ZrO2 (8YSZ), Ceram. Int., 2010, vol. 36, no. 3, pp. 879–885.

    Article  CAS  Google Scholar 

  22. Matsui, K. and Hojo, J., Sintering kinetics at constant rates of heating: effect of GeO2 addition on the initial sintering stage of 3 mol % Y2O3-doped zirconia powder, J. Mater. Sci., 2008, vol. 43, no. 3, pp. 852–859.

    Article  CAS  Google Scholar 

  23. Mazaheri, M., Golestani-Fard, F., and Simchi, A., An investigation on densification of nanocrystalline 3Y-TZP using master sintering curve, Int. Conf. and Exhibition of the Eur. Ceram. Soc., Cádiz, 2012.

  24. Banerjee, J., Kutty, T.R.G., Kumar, A., Kamath, H.S., and Banerjee, S., Densification behaviour and sintering kinetics of ThO2–4% UO2 pellet, J. Nucl. Mater., 2011, vol. 408, no. 3, pp. 224–230.

    Article  CAS  Google Scholar 

  25. Sato, E. and Carry, C., Yttria doping and sintering of submicrometer-grained α-alumina, J. Am. Ceram. Soc., 1996, vol. 79, no. 8, pp. 2156–2160.

    Article  CAS  Google Scholar 

  26. Aminzare, M., Golestani-fard, F., Guillon, O., Mazaheri, M., and Rezaie, H.R., Sintering behavior of an ultrafine alumina powder shaped by pressure filtration and dry pressing, Mater. Sci. Eng., A, 2010, vol. 527, nos. 16–17, pp. 3807–3812.

    Article  CAS  Google Scholar 

  27. Kinemuchi, Y. and Watari, K., Dilatometer analysis of sintering behavior of nano-CeO2 particles, J. Eur. Ceram. Soc., 2008, vol. 28, no. 10, pp. 2019–2024.

    Article  CAS  Google Scholar 

  28. Rozenburg, K., Reimanis, I.E., Kleebe, H.J., and Cook, R.L., Sintering kinetics of a MgAl2O4 spinel doped with LiF, J. Am. Ceram. Soc., 2008, vol. 91, no. 12, pp. 444–450.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by the Russian Foundation for Basic Research, grant no. Mol_a 18-38-00327. The experimental work (X-ray diffraction, scanning electron microscopy, and particle size analysis) was supported by the Russian Federation Ministry of Science and Higher Education (state research target no. 007-00129-18-00). We are grateful to our colleagues at OOO Plazmoterm for supplying the raw materials and for fruitful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. D. Titov.

Additional information

Translated by O. Tsarev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Titov, D.D., Kargin, Y.F., Lysenkov, A.S. et al. Activation Energy and Mechanism of the Molybdenum Disilicide Sintering Process. Inorg Mater 54, 1113–1118 (2018). https://doi.org/10.1134/S0020168518110134

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168518110134

Keywords:

Navigation