Skip to main content
Log in

Reaction-Bonded Reinforced Dicalcium Phosphate Dihydrate-Based Composite Materials for Orthopedics and Traumatology

  • Published:
Inorganic Materials Aims and scope

Abstract

A process has been proposed for the fabrication of reaction-bonded dicalcium phosphate dihydrate-based composite materials possessing rather high strength owing to reinforcement with discrete glass fiber and compaction. We have studied the effects of the heat treatment temperature of tricalcium phosphate, a precursor to dicalcium phosphate dihydrate, and filler concentration on the chemical and physicomechanical properties of the composite materials thus produced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Chow, L.C., Next generation of calcium phosphate biomaterials, Dental Mater. J., 2009, vol. 28, pp. 1–10. doi 10.4012/dmj.28.1

    Article  CAS  Google Scholar 

  2. Bohner, M., Design of ceramic-based cements and putties for bone graft substitution, Eur. Cells Mater., 2010, vol. 20, pp. 1–12.

    Article  CAS  Google Scholar 

  3. Tamimi, F., Sheikh, Z., and Barraletet, J., Dicalcium phosphate cements. Brushite and monetite, Acta Biomater., 2012, vol. 8, pp. 474–487. doi 10.1016/j.actbio.2011.08.005

    Article  CAS  PubMed  Google Scholar 

  4. Maenz, S., Kunisch, E., and Mühlstädt, M., Böhm, A., et al., Enhanced mechanical properties of a novel, injectable, fiber-reinforced brushite cement, J. Mech. Behavior Biomed. Mater., 2014, vol. 39, pp. 328–338. doi 10.1016/j.jmbbm.2014.07.028

    Article  CAS  Google Scholar 

  5. Ishikawa, K., Calcium phosphate cement, in Advances in Calcium Phosphate Biomaterials, New York: Springer, 2014, pp. 199–227.

    Google Scholar 

  6. Dorozhkin, S.V., Calcium orthophosphate cements and concretes, Materials, 2009, vol. 2, pp. 221–291. doi 10.3390/ma2010221

    Article  CAS  PubMed Central  Google Scholar 

  7. Dorozhkin, S.V., Self-setting calcium orthophosphate formulation, J. Funct. Biomater., 2013, vol. 4, pp. 209–311. doi 10.3390/jfb4040209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Alge, D.L., Bennett, J., Treasure, T., Voytik-Harbin, S., et al., Poly(propylene fumarate) reinforced dicalcium phosphate dehydrate cement composites for bone tissue engineering, J. Biomed. Mater. Res., Part A, 2012, vol. 100, no. 7, paper 1792-802. doi 10.1002/jbm.a.34130

  9. Gorst, N.J.S., Perrie, Y., Gbureck, U., Hutton, A.L., et al., Effects of fibre reinforcement on the mechanical properties of brushite cement, Acta Biomater., 2006, vol. 2, pp.95–102. doi 10.1016/j.actbio.2005.09.001

    Article  CAS  PubMed  Google Scholar 

  10. Grover, L.M., Hofmann, M.P., Gbureck, U., Kumarasami, B., and Barralet, J.E., Frozen delivery of brushite calcium phosphate cements, Acta Biomater., 2008, vol. 4, pp. 1916–1923. doi 10.1016/j.actbio.2008.06.003

    Article  CAS  PubMed  Google Scholar 

  11. Canal, C. and Ginebra, M.P., Fibre-reinforced calcium phosphate cements: a review, J. Mech. Behavior Biomed. Mater., 2011, vol. 4, pp. 1658–1671. doi 10.1016/j.jmbbm.2011.06.023

    Article  CAS  Google Scholar 

  12. Xu, H.H.K., Eichmiller, F.C., and Giuseppetti, A.A., Reinforcement of a self-setting calcium phosphate cement with different fibers, J. Biomed. Mater. Res., 2000, vol. 52, pp. 107–114. doi 10.1002/1097-4636(200010)52:1<107::AID-JBM13>3.0.CO;2-0

    Article  CAS  PubMed  Google Scholar 

  13. US Patent 7 820 191, 2010.

  14. Lukina, Yu.S., Sventskaya, N.V., Golikova, P.V., Sivkov, S.P., et al., Reaction-bonded bioresorbable composite materials, Glass Ceram., 2013, vol. 70, nos. 5–6, pp. 195–199.

    Article  CAS  Google Scholar 

  15. RF Patent 2 490 031, 2013.

  16. Egorov, A.A., Fedotov, A.Yu., Pereloma, I.S., Teterina, A.Yu., et al., Calcium phosphate composite cements based on simple mixture of brushite and apatite phases, IOP Conf. Ser.: Mater. Sci. Eng., 2018, vol. 347, pp. 1–9.

  17. Kosyakov, M.N., Clinico-experimental substantiation of application of apatite–silicate implants for replacement of defects and deformations of bones of the facial skeleton, Extended Abstract of Cand. Sci. (Med.) Dissertation, Moscow, 2002.

  18. RF Patent 2 623 211, 2016.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. V. Sventskaya.

Additional information

Translated by O. Tsarev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sventskaya, N.V., Sivkov, S.P. & Lukina, Y.S. Reaction-Bonded Reinforced Dicalcium Phosphate Dihydrate-Based Composite Materials for Orthopedics and Traumatology. Inorg Mater 54, 1168–1174 (2018). https://doi.org/10.1134/S0020168518110122

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168518110122

Keywords:

Navigation