Skip to main content
Log in

Probe Mössbauer Spectroscopy of BiNi0.9657Fe0.04O3

  • Published:
Inorganic Materials Aims and scope

Abstract

This paper presents results of a 57Fe probe Mössbauer spectroscopy study of the BiNi0.9657Fe0.04O3 nickelate. The spectra measured above its TN demonstrate that Fe3+ cations heterovalently substitute for Ni2+ nickel (←Fe3+), being stabilized on four sites of the nickel sublattice in the structure of BiNiO3. Calculations in an ionic model with allowance for monopole and dipole contributions to the electric field gradient indicate that the parameters of electric hyperfine interactions between 57Fe probe atom nuclei reflect the specifics of the local environment of the nickel in the structure of the unsubstituted BiNiO3 nickelate. Below TN, Mössbauer spectra transform into a complex Zeeman structure, which is analyzed in terms of first-order perturbation theory with allowance for electric quadrupole interactions as a small perturbation of the Zeeman levels of the 57Fe hyperfine structure, as well as for specific features of the magnetic ordering of the Ni2+ cations in the nickelate studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Torrence, J.B., Lacorre, P., Nazzal, A.I., et al., Systematic study of insulator–metal transitions in perovskites RNiO3 (R = Pr, Nd, Sm, Eu) due to closing of charge–transfer gap, Phys. Rev. B: Condens. Matter Mater. Phys., 1992, vol. 45, no. 14, pp. 8209–8212.

    Google Scholar 

  2. Medarde, M.L., Structural, magnetic and electronic properties of RNiO3 perovskites (R = rare earth), J. Phys.: Condens. Matter, 1997, vol. 9, no. 8, pp. 1679–1707.

    CAS  Google Scholar 

  3. Garcia–Munoz, J.L., Rodriguez–Carvajal, J., Lacorre, P., and Torrance, J.B., Neutron–diffraction study of RNiO3 (R = La, Pr, Nd, Sm): electronically induced structural changes across the metal–insulator transition, Phys. Rev. B: Condens. Matter Mater. Phys., 1992, vol. 46, no. 8, pp. 4414–4425.

    Article  Google Scholar 

  4. Garcia–Munoz, J.L., Rodriguez–Carvajal, J., and Lacorre, P., Neutron–diffraction study of the magnetic ordering in the insulating regime of the perovskites RNiO3 (R = Pr and Nd), Phys. Rev. B: Condens. Matter Mater. Phys., 1994, vol. 50, no. 2, pp. 978–992.

    Article  Google Scholar 

  5. Rodriguez–Carvajal, J., Rosenkranz, S., Medarde, M., et al., Neutron–diffraction study of the magnetic and orbital ordering in 154SmNiO3 and 153EuNiO3, Phys. Rev. B: Condens. Matter Mater. Phys., 1998, vol. 57, no. 1, pp. 456–464.

    Article  Google Scholar 

  6. Alonso, J.A., Martinez–Lope, M.J., Casais, M.T., et al., Metal–insulator transitions, structural and microstructural evolution of RNiO3 (R = Sm, Eu, Gd, Dy, Ho, Y) perovskites: evidence for room–temperature charge disproportionation in monoclinic HoNiO3 and YNiO3, J. Am. Chem. Soc., 1999, vol. 121, no. 20, pp. 4754–4762.

    CAS  Google Scholar 

  7. Sanchez, R.D., Causa, M.T., Seoane, A., et al., Metal–insulator transition and magnetic properties of La1–xEuxNiO3 (0 ≤ x ≤ 1), J. Solid State Chem., 2000, vol. 151, no. 1, pp. 1–11.

    Article  CAS  Google Scholar 

  8. Vassiliou, J.K., Hornobostel, M., Ziebarth, R., and Disalvo, F.J., Synthesis and properties of NdNiO3 prepared by low–temperature methods, J. Solid State Chem., 1989, vol. 81, no. 2, pp. 208–216.

    Article  CAS  Google Scholar 

  9. Cai, M.Q., Yang, G.W., Cao, Y.L., et al., First–principles study of electronic and magnetic properties of BiNiO3, Appl. Phys. Lett., 2007, vol. 90, no. 24, paper 242 911.

    Google Scholar 

  10. Ishiwata, S., Azuma, M., Takano, M., et al., High pressure synthesis, crystal structure and physical properties of a new Ni(II) perovskite BiNiO3, J. Mater. Chem., 2002, vol. 12, pp. 3733–3737.

    Article  CAS  Google Scholar 

  11. Azuma, M., Carlsson, S., Rodgers, J., et al., Pressureinduced intermetallic valence transition in BiNiO3, J. Am. Chem. Soc., 2007, vol. 129, no. 46, pp. 14433–14436.

    Article  CAS  PubMed  Google Scholar 

  12. Ishiwata, S., Azuma, M., and Takano, M., Pressureinduced metal–insulator transition in BiNiO3, Solid State Ionics, 2004, vol. 172, nos. 1–4, pp. 569–571.

    Article  CAS  Google Scholar 

  13. Ishiwata, S., Azuma, M., Hanawa, M., et al., Pressure/temperature/substitution–induced melting of A–site charge disproportionation in Bi1–xLaxNiO3 (0 ≤ x ≤ 0.5), Phys. Rev. B: Condens. Matter Mater. Phys., 2005, vol. 72, no. 4, paper 045 104.

  14. Wadati, H., Yakizawa, M., Tran, T.T., et al., Valence changes associated with the metal–insulator transition in Bi1–xLaxNiO3, Phys. Rev. B: Condens. Matter Mater. Phys., 2005, vol. 72, no. 15, paper 155 103.

    Google Scholar 

  15. Kim, S., Demazeau, G., Presniakov, I., et al., 57Fe Mössbauer investigation on doped nickelates ANiO3 (A = Y, Lu, Tl), J. Am. Chem. Soc., 2001, vol. 123, no. 33, pp. 8127–8128.

    Article  CAS  PubMed  Google Scholar 

  16. Rusakov, V.S., Presniakov, I.A., Demazeau, G., et al., Structure of the local environment and hyperfine interactions of 57Fe probe atoms in DyNiO3 nickelate, Bull. Russ. Acad. Sci. Phys., 2010, vol. 74, no. 3, pp. 335–338.

    Article  Google Scholar 

  17. Alonso, J.A., Martinez–Lope, M.J., Demazeau, G., et al., On the evolution of the DyNiO3 perovskite across the metal–insulator transition through neutron diffraction and Mössbauer spectroscopy studies, Dalton Trans., 2008, vol. 46, pp. 6584–6592.

    Article  CAS  Google Scholar 

  18. Presniakov, I., Baranov, A., Demazeau, G., et al., Evidence through Mössbauer spectroscopy of two different states for 57Fe probe atoms in RNiO3 perovskites with intermediate–size rare earths, R = Sm, Eu, Gd, Dy, J. Phys.: Condens. Matter, 2007, vol. 19, no. 3, paper 036201.

    Google Scholar 

  19. Alonso, J.A., Martinez–Lope, M.J., Presniakov, I.A., et al., Charge disproportionation in RNiO3 (R = Tm, Yb) perovskites observed in situ by neutron diffraction and 57Fe probe Mössbauer spectroscopy, Phys. Rev. B: Condens. Matter Mater. Phys., 2013, vol. 87, no. 18, paper 184 111.

    Google Scholar 

  20. Rusakov, V.S., Presniakov, I.A., Gapochka, A.M., et al., Hyperfine interactions of 57Fe impurity nuclei in TmNiO3 and YbNiO3 nickelates in the range of magnetic and structure phase transitions, Bull. Russ. Acad. Sci. Phys., 2013, vol. 77, no. 6, pp. 672–677.

    Article  CAS  Google Scholar 

  21. Kim, S.J., Demazeau, G., Presnyakov, I.A., et al., Structure of the local surroundings and hyperfine coupling of probe Fe–57 atoms in ANiO3 nickelates (A = Pr, Nd, Sm, Lu, Y, Tl), Russ. J. Inorg. Chem., 2002, vol. 47, no. 9, pp. 1387–1393.

    Google Scholar 

  22. Kim, S.J., Demazeau, G., Presniakov, I., et al., Orbital ordering in NdNiO3 and SmNiO3 investigated by Mössbauer spectroscopy, Phys. Rev. B: Condens. Matter Mater. Phys., 2002, vol. 66, no. 1, paper 014 427.

    Google Scholar 

  23. Matsnev, M.E. and Rusakov, V.S., SpectrRelax: an application for Mössbauer spectra modeling and fitting, AIP Conf. Proc., 2012, vol. 1489, pp. 178–185.

    Article  CAS  Google Scholar 

  24. Rusakov, V.S., Messbauerovskaya spektroskopiya lokal’no neodnorodnykh sistem (Mössbauer Spectroscopy of Locally Inhomogeneous Systems), Almaty, 2000.

    Google Scholar 

  25. Carlsson, S.J.E., Azuma, M., Shimakawa, Y., et al., Neutron powder diffraction study of the crystal and magnetic structures of BiNiO3 at low temperature, J. Solid State Chem., 2008, vol. 181, no. 3, pp. 611–615.

    Article  CAS  Google Scholar 

  26. Menil, F., Systematic trends of the 57Fe Mossbauer isomer shifts in (FeOn) and (FeFn) polyhedra. Evidence of a new correlation between the isomer shift and the inductive effect of the competing bond T–X (→Fe) (where X is O or F and T any element with a formal positive charge), J. Phys. Chem. Solids, 1985, vol. 46, no. 7, pp. 763–789.

    Article  CAS  Google Scholar 

  27. Belik, A.A., Glazkova, Y.S., Katsuya, Y., et al., Lowtemperature structural modulations in CdMn7O12, CaMn7O12, SrMn7O12, and PbMn7O12 perovskites studied by synchrotron X–ray powder diffraction and Mössbauer spectroscopy, J. Phys. Chem. C, 2016, vol. 120, no. 15, pp. 8278–8288.

    CAS  Google Scholar 

  28. Presniakov, I.A., Rusakov, V.S., Gubaidulina, T.V., et al., Hyperfine interactions and local environment of 57Fe probe atoms in perovskite CaMn7O12, Phys. Rev. B: Condens. Matter Mater. Phys., 2007, vol. 76, no. 21, paper 214 407.

    Google Scholar 

  29. Sobolev, A., Rusakov, V., Moskvin, A., et al., 57Fe Mössbauer study of unusual magnetic structure of multiferroic 3R–AgFeO2, J. Phys.: Condens. Matter, 2017, vol. 29, paper 275 803.

  30. Sobolev, A., Presniakov, I., Rusakov, V., et al., Mössbauer investigations of hyperfine interactions features of 57Fe nuclei in BiFeO3 ferrite, AIP Conf. Proc., 2014, vol. 1622, pp. 104–108.

    Article  CAS  Google Scholar 

  31. Stadnik, Z.M., Electric field gradient calculations in rare–earth iron garnets, J. Phys. Chem. Solids, 1984, vol. 45, no. 3, pp. 311–318.

    Article  CAS  Google Scholar 

  32. Taft, C.A., Oxygen dipolar contributions to the EFG tensor in crystals of the AFeO2 type (A = Na, Cu, Ag), J. Phys. C: Solid State Phys., 1977, vol. 10, no. 13, pp. L369–L370.

    Google Scholar 

  33. Shannon, R.D. and Fischer, R.X., Empirical electronic polarizabilities in oxides, hydroxides, oxyfluorides, and oxychlorides, Phys. Rev. B: Condens. Matter Mater. Phys., 2006, vol. 73, no. 23, paper 235 111.

    Google Scholar 

  34. Dickson, D.P.E. and Berry, F.J., Mössbauer Spectroscopy, Cambridge: Cambridge University Press, 1986.

    Book  Google Scholar 

  35. Rusakov, V.S. and Khramov, D.A., The problem of choice Fe–57 nucleus quadrupole–moment value in Mössbauer–spectroscopy, Izv. Akad. Nauk SSSR, Ser. Fiz., 1992, vol. 56, no. 7, p. 201.

    CAS  Google Scholar 

  36. Yatsenko, A.V., Calculation of local electric fields in displacive–type ferroelectrics: LiNbO3, Crystallogr. Rep., 2000, vol. 45, no. 1, pp. 133–137.

    Article  Google Scholar 

  37. Jain, S.C., Sharma, T.P., and Arora, N.D., Electronic polarizabilities of ions in II–VI crystals, J. Phys. Chem. Solids, 1976, vol. 37, no. 1, pp. 81–82.

    Article  CAS  Google Scholar 

  38. Tessman, J.R., Kahn, A.H., and Shockley, W., Electronic polarizabilities of ions in crystals, Phys. Rev., 1953, vol. 92, no. 4, pp. 890–895.

    Article  CAS  Google Scholar 

  39. Eibschutz, M. and Lines, M.E., Observation of second–order quadrupole shift in Mössbauer spectrum of amorphous YIG (yttrium iron garnet), Phys. Rev. B: Condens. Matter Mater. Phys., 1982, vol. 25, no. 6, pp. 4256–4259.

    Article  Google Scholar 

  40. Sawatzky, G.A. and Van Der Woude, F., Covalence effects in hyperfine interactions, J. Phys. Colloq. C, 1974, vol. 35, no. 6, pp. 47–60.

    Google Scholar 

  41. Boekema, C., Van der Woude, F., and Sawatzky, G.A., Covalency effects and hyperfine interactions in the rare earth orthoferrites, Int. J. Magn., 1972, vol. 3, pp. 341–348.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Sobolev.

Additional information

Original Russian Text © Yu.O. Lekina, I.S. Glazkova, A.A. Belik, I.A. Presniakov, A.V. Sobolev, 2018, published in Neorganicheskie Materialy, 2018, Vol. 54, No. 10, pp. 1046–1054.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lekina, Y.O., Glazkova, I.S., Belik, A.A. et al. Probe Mössbauer Spectroscopy of BiNi0.9657Fe0.04O3. Inorg Mater 54, 990–997 (2018). https://doi.org/10.1134/S0020168518100126

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168518100126

Keywords

Navigation