High-Temperature Heat Capacity and Thermodynamic Properties of HoBiGeO5 and ErBiGeO5

Abstract

Polycrystalline HoBiGeO5 and ErBiGeO5 samples have been prepared by solid-state reactions, by firing stoichiometric mixtures of Ho2O3 (Er2O3), Bi2O3, and GeO2. The effect of temperature on the heat capacity of the synthesized compounds has been investigated by differential scanning calorimetry in the range 350–1000 K. The experimental Cp(T) data have been used to evaluate the thermodynamic functions of bismuth holmium and bismuth erbium germanates: enthalpy increment, entropy change, and reduced Gibbs energy.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Bondar’, I.A., Vinogradova, N.V., Dem’yanets, L.N., et al., Soedineniya redkozemel’nykh elementov. Silikaty, germanaty, fosfaty, arsenaty, vanadaty (Rare-Earth Compounds: Silicates, Germanates, Phosphates, Arsenates, and Vanadates), Moscow: Nauka, 1983.

    Google Scholar 

  2. 2.

    Cascales, C., Campa, J.A., Puebla, E.G., et al., New rare-earth (Y, Yb) bismuth germanates, an initial study of a promising series, J. Mater. Chem., 2002, vol. 12, pp. 36–26.

    Google Scholar 

  3. 3.

    Cascales, C. and Zaldo, C., Crystal-field analysis of Eu3+ energy levels in the new rare-earth BiY1–xRxGeO5 oxide, J. Solid State Chem., 2003, vol. 173, pp. 262–267.

    Article  CAS  Google Scholar 

  4. 4.

    Cascales, C. and Zaldo, C., Spectroscopic characterization and systematic crystal-field modeling of optically active rare earth R3+ ions in the bismuth germanate BiY1–xRxGeO5 host, Chem. Mater., 2006, vol. 18, pp. 3742–3753.

    Article  CAS  Google Scholar 

  5. 5.

    Kargin, Yu.F., Burkov, V.I., Mar’in, A.A., et al., Kristally Bi12MxO20 ± δ so strukturoi sillenita. Sintez, stroenie, svoistva (Sillenite-Structure Bi12MxO20 ± δ Crystals: Synthesis, Structure, and Properties), Moscow: Inst. Obshchei i Neorgsnicheskoi Khimii Ross. Akad. Nauk, 2004.

    Google Scholar 

  6. 6.

    Zhereb, V.P., Metastabil’nye sostoyaniya v oksidnykh vismutsoderzhashchikh sistemakh (Metastable States in Bismuth-Containing Oxide Systems), Moscow: MAKS Press, 2003.

    Google Scholar 

  7. 7.

    Denisova, L.T., Belousova, N.V., Galiakhmetova, N.A., et al., High-temperature heat capacity of YBiGeO5 and GdBiGeO5 in the range 373–1000 K, Phys. Solid State, 2017, vol. 59, no. 5, pp. 1047–1050.

    Article  CAS  Google Scholar 

  8. 8.

    Denisova, L.T., Belousova, N.V., Galiakhmetova, N.A., et al., High-temperature specific heat of Bi2GeO5 and SmBiGeO5, Phys. Solid State, 2017, vol. 59, no. 8, pp. 1683–1686.

    Article  CAS  Google Scholar 

  9. 9.

    Denisova, L.T., Irtyugo, L.A., Kargin, Yu.F., et al., High-temperature heat capacity and vibrational spectra of Eu2Sn2O7, Inorg. Mater., 2016, vol. 52, no. 8, pp. 811–814.

    Article  CAS  Google Scholar 

  10. 10.

    Denisov, V.M., Denisova, L.T., Irtyugo, L.A., and Biront, V.S., Thermal physical properties of Bi4Ge3O12 single crystals, Phys. Solid State, 2010, vol. 52, no. 7, pp. 1362–1365.

    Article  CAS  Google Scholar 

  11. 11.

    Tret’yakov, Yu.D., Martynenko, L.I., Grigor’ev, A.N., and Tsivadze, A.Yu., Neorganicheskaya khimiya. Khimiya elementov (Inorganic Chemistry: The Chemistry of Elements), Moscow: Khimiya, 2001, vol. 1.

    Google Scholar 

  12. 12.

    Denisova, L.T., Kargin, Yu.F., and Denisov, V.M., Heat capacity of rare-earth cuprates, orthovanadates, and aluminum garnets, gallium garnets, and iron garnets, Phys. Solid State, 2015, vol. 57, no. 8, pp. 1699–1703.

    Article  CAS  Google Scholar 

  13. 13.

    Leitner, J., Chuchvalec, P., Sedmidubský, D., et al., Estimation of heat capacities of solid mixed oxides, Thermochim. Acta, 2003, vol. 395, pp. 27–46.

    Article  CAS  Google Scholar 

  14. 14.

    Denisova, L.T., Izotov, A.D., Kargin, Yu.F., et al., Heat capacity of GdBiGeO5 in the temperature range 373–1000 K, Dokl. Phys. Chem., 2017, vol. 473, no. 2, pp. 58–60.

    Article  CAS  Google Scholar 

  15. 15.

    Shannon, R.D., Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides, Acta Crystallogr., Sect. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr., 1976, vol. 32, no. 5, pp. 751–767.

    Article  Google Scholar 

  16. 16.

    Moiseev, G.K., Vatolin, N.A., Marshuk, L.A., et al., Temperaturnye zavisimosti privedennoi energii Gibbsa nekotorykh neorganicheskikh veshchestv (al’ternativnyi bank dannykh ASTRA. OWN) (Temperature-Dependent Reduced Gibbs Energy of Some Inorganic Substances: ASTRA.OWN Alternative Database), Yekaterinburg: Ural’sk. Otd. Ross. Akad. Nauk, 1997.

    Google Scholar 

  17. 17.

    Reznitskii, L.A., Kalorimetriya tverdogo tela (Calorimetry of Solids), Moscow: Mosk. Gos. Univ., 1981.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to L. T. Denisova.

Additional information

Original Russian Text © L.T. Denisova, Yu.F. Kargin, N.V. Belousova, N.A. Galiakhmetova, V.M. Denisov, 2018, published in Neorganicheskie Materialy, 2018, Vol. 54, No. 9, pp. 972–976.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Denisova, L.T., Kargin, Y.F., Belousova, N.V. et al. High-Temperature Heat Capacity and Thermodynamic Properties of HoBiGeO5 and ErBiGeO5. Inorg Mater 54, 920–924 (2018). https://doi.org/10.1134/S0020168518090029

Download citation

Keywords

  • solid-state synthesis
  • bismuth holmium and bismuth erbium germanates
  • high-temperature heat capacity
  • thermodynamic properties