Skip to main content
Log in

Influence of the Preparation Conditions and Percolation Threshold on the Properties of Lead Zirconate Titanate/Cobalt Nickel Ferrite Magnetoelectric Composites

  • Published:
Inorganic Materials Aims and scope

Abstract

We have prepared magnetoelectric (ME) composite ceramics, free of foreign phases, in the lead zirconate titanate–cobalt nickel ferrite two-phase system: xPZT-36 + (100–x)Ni0.9Co0.1Fe2O4. The sol–gel derived ferrite powder used in our preparations seems to be doped with titanium cations from the PZT-36. The ceramics have a percolation threshold at x = 50–70 wt %, which is due to the increased electrical conductivity of Ni0.9Co0.1Fe2O4. As a consequence, the piezoelectric parameters of the ME ceramics drop sharply at x < 50–70 wt %: the piezoelectric moduli |dij| and piezoelectric voltage coefficients |gij| decrease by a factor of 3–5 in this composite range. The piezoelectric parameters |dij| and |gij| of the composites produced using the fine ferrite powder exceed those of the materials prepared using macrocrystalline Ni0.9Co0.1Fe2O4 powder by more than a factor of 2. The piezoelectric voltage coefficient g33 correlates with the ME coefficient ΔEH. The highest ME conversion efficiency (up to 45 mV/(cm Oe)) is offered by the 80 wt % PZT-36 + 20 wt % Ni0.9Co0.1Fe2O4 composites, whose composition lies in a subpercolation region. Even though the composites produced using the fine ferrite powder possess improved piezoelectric properties, they have smaller ΔEH coefficients (no greater than 25 mV/(cm Oe)), which can be tentatively attributed to the degradation of the properties of the ferrite as a consequence of doping with Ti4+ cations during the sintering of the composite ceramics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lupeiko, T.G., Lopatin, S.S., Lisnevskaya, I.V., and Zvyagintsev, B.I., Magnetoelectric composite materials based on lead zirconate titanate and nickel ferrite, Inorg. Mater., 1994, vol. 30, no. 11, pp. 1353–1356.

    Google Scholar 

  2. Lisnevskaya, I.V., Bobrova, I.A., Bikyashev, E.A., and Lupeiko, T.G., Interfacial reactions and properties of Y3Fe5O12/Ba1 − xPbxTiO3 composites, Inorg. Mater., 2006, vol. 42, no. 10, pp. 1147–1151.

    Article  CAS  Google Scholar 

  3. Nan, C.-W., Bichurin, M.I., Dong, S., Viehland, D., and Srinivasan, G., Multiferroic magnetoelectric composites: historical perspective, status and future directions, J. Appl. Phys., 2008, vol. 103, paper 031 101.

  4. Lisnevskaya, I.V., Bobrova, I.A., and Lupeiko, T.G., Comparison of the properties of PZTNB-1 + Ni0.9Co0.1Cu0.1Fe1.9O4 − δ magnetoelectric composites manufactured from components synthesized by sol–gel processes, Russ. J. Inorg. Chem., 2012, vol. 57, no. 1, pp. 84–89.

    Article  CAS  Google Scholar 

  5. Ma, J., Hu, J., Li, Z., and Nan, C.-W., Recent progress in multiferroic magnetoelectric composites: from bulk to thin films, Adv. Mater., 2011, vol. 23, pp. 1062–1087.

    Article  CAS  PubMed  Google Scholar 

  6. Lisnevskaya, I.V., Myagkaya, K.V., and Bobrova, I.A., Lithium sodium potassium niobate-modified nickel ferrite lead-free magnetoelectric composite ceramics, Ceram. Int., 2015, vol. 41, no. 10, pp. 15 217–15 221.

    Article  CAS  Google Scholar 

  7. Lisnevskaya, I.V., Bobrova, I.A., Lupeiko, T.G., Agamirzoeva, M.R., and Myagkaya, K.V., Y3Fe5O12/Na,Bi,Sr-doped PZT particulate magnetoelectric composites, J. Magn. Magn. Mater., 2016, vol. 405, pp. 62–65.

    Article  CAS  Google Scholar 

  8. Lupeiko, T.G., Lisnevskaya, I.V., Chkheidze, M.D., and Zvyagintsev, B.I., Laminated magnetoelectric composites based on nickel ferrite and PZT materials, Inorg. Mater., 1995, vol. 31, no. 9, pp. 1139–1142.

    CAS  Google Scholar 

  9. Bichurin, M.I., Petrov, V.M., and Petrov, R.V., Direct and inverse magnetoelectric effect in layered composites in electromechanical resonance range: a review. J. Magn. Magn. Mater., 2012, vol. 324, no. 21, pp. 3548–3550.

    Article  CAS  Google Scholar 

  10. Lisnevskaya, I.V. and Lupeiko, T.G., PZT-36/NiCo0.02Cu0.02Mn0.1Fe1.8O4 − δ magnetoelectric rod composites with 1–3, 3–1, and 1–1 connectivity, Inorg. Mater., 2012, vol. 48, no. 4, pp. 410–415.

    Article  CAS  Google Scholar 

  11. Lisnevskaya, I.V., Lupeiko, T.G., and Lagunova, N.G., Influence of the connectivity pattern, the nature of the piezoelectric material, and rod thickness on the properties of 50 vol % PZT/50 vol % NiCo0.02Cu0.02-Mn0.1Fe1.8O4 − δ magnetoelectric composites, Inorg. Mater., 2014, vol. 50, no. 7, pp. 723–727.

    Article  CAS  Google Scholar 

  12. Lisnevskaya, I.V., Lupeiko, T.G., and Myagkaya, K.V., Investigation of the influence of various factors on the dielectric, piezoelectric, and magnetoelectric properties of 1–3, 3–1, and 1–1 multiferroic composites, J. Compos. Mater., 2017, vol. 51, no. 4, pp. 507–517.

    Article  CAS  Google Scholar 

  13. Suchtelen, J.V., Product properties: a new application of composite materials, Philips Res. Rep., 1972, vol. 27, no. 1, pp. 28–37.

    Google Scholar 

  14. Newnham, R.E., Composite electroceramics. Part 1, CHEMTECH, 1986, vol. 16, no. 12, pp. 732–739.

    CAS  Google Scholar 

  15. Newnham, R.E., Composite electroceramics. Part 2, CHEMTECH, 1987, vol. 17, no. 1, pp. 38–45.

    CAS  Google Scholar 

  16. Sorokin, V.V., Smirnov, A.M., Badelin, A.G., and Karpasyuk, V.K., RF Patent, 2011.

    Google Scholar 

  17. Lisnevskaya, I.V., Bobrova, I.A., Petrova, A.V., and Lupeiko, T.G., Low-temperature sol–gel synthesis of modified nickel ferrite, Russ. J. Inorg. Chem., 2012, vol. 57, no. 4, pp. 474–477.

    Article  CAS  Google Scholar 

  18. Lisnevskaya, I.V., Bobrova, I.A., and Lupeiko, T.G., Synthesis of magnetic and multiferroic materials from polyvinyl alcohol based gels, J. Magn. Magn. Mater., 2017, vol. 51, no. 4, pp. 507–517.

    CAS  Google Scholar 

  19. Kovba, L.M. and Trunov, V.K., Rentgenofazovyi analiz (X-ray Diffraction Analysis), Moscow: Mosk. Gos. Univ., 1976.

    Google Scholar 

  20. Bracke, L.P.M. and van Vliet, R.G., A broadband magneto-electric transducer using a composite material, Int. J. Electron., 2007, vol. 51, no. 3, pp. 255–262.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Lisnevskaya.

Additional information

Original Russian Text © I.V. Lisnevskaya, N.A. Levshina, 2018, published in Neorganicheskie Materialy, 2018, Vol. 54, No. 8.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lisnevskaya, I.V., Levshina, N.A. Influence of the Preparation Conditions and Percolation Threshold on the Properties of Lead Zirconate Titanate/Cobalt Nickel Ferrite Magnetoelectric Composites. Inorg Mater 54, 851–858 (2018). https://doi.org/10.1134/S0020168518080113

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168518080113

Keywords

Navigation