Skip to main content
Log in

Influence of Processing Techniques on the Surface Microstructure of V85Ni15 Membrane Alloy

  • Published:
Inorganic Materials Aims and scope

Abstract

Vanadium-based alloys with a BCC structure are considered to be an alternative to palladium alloys for hydrogen purification. Since the performance of membranes is influenced by not only their bulk characteristics but also their surface condition, we have investigated the effect of different surface preparation techniques (abrasive grinding and polishing, electrolytic polishing, and ion etching) on the surface microstructure of V85Ni15 membrane alloy using X-ray photoelectron spectroscopy. After electrolytic polishing and ion etching, we observed an increase in the percentages of vanadium and nickel metals in the surface layer of the alloy in comparison with its state after abrasive polishing. Such changes are expected to be favorable for an increase in the rate of hydrogen dissociation and recombination on the surface of the membrane material, eventually improving hydrogen transport efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Burkhanov, G.S., Gorina, N.B., Kol’chugina, N.V., Korenovskii, N.L., Roshan, N.R., Slovetskii, D.I., and Chistov, E.M., Palladium alloys with rare-earth metals: promising materials for hydrogen energy development, Tyazheloe Mashinostr., 2007, no. 11, pp. 17–25.

    Google Scholar 

  2. Didenko, L.P., Savchenko, V.I., Sementsova, L.A., and Chizhov, P.E., Dehydrogenation of propane and nbutane in a membrane reactor with an AOK-73-24 commercial aluminum–chromium catalyst and palla-dium membrane, Membr. Membr. Tekhnol., 2016, vol. 6, no. 2, pp. 204–208.

    Google Scholar 

  3. Didenko, L.P., Savchenko, V.I., Sementsova, L.A., Chizhov, P.E., and Bykov, L.A., Dehydrogenation of propane in a combined membrane reactor with hydrogen-permeable palladium module, Pet. Chem., 2013, vol. 53, pp. 27–32. https://doi.org/10.1134/S0965544113010039

    Article  CAS  Google Scholar 

  4. Tosti, S., Overview of Pd-based membranes for producing pure hydrogen and state of art at ENEA laboratories, Int. J. Hydrogen Energy, 2010, vol. 35, pp. 12650–12663. https://doi.org/10.1016/j.ijhydene.2010.07.116

    Article  CAS  Google Scholar 

  5. Lu, G.Q., Diniz da Costa, J.C., Duke, M., Giessler, S., Socolow, R., Williams, R.H., and Kreutz, T., Inorganic membranes for hydrogen production and purification: a critical review and perspective, J. Colloid Interface Sci., 2007, vol. 314. pp. 589–603. https://doi.org/10.1016/j.jcis.2007.05.067

    Article  CAS  PubMed  Google Scholar 

  6. Dolan, M.D., Non-Pd BCC alloy membranes for industrial hydrogen separation, J. Membr. Sci., 2010, vol. 362, pp. 12–20.

    Article  CAS  Google Scholar 

  7. Voyt, A., Sidorov, N., Sipatov, I., Dobrotvorskii, M., Piven, V., and Gabis, I., Hydrogen solubility in V85Ni15 alloy, Int. J. Hydrogen Energy, 2016, vol. 42, no. 5, pp. 3058–3061. https://doi.org/10.1016/j.ijhydene.2016.10.033

    Article  CAS  Google Scholar 

  8. Zaika, Yu.V., Rodchenkova, N.I., and Sidorov, N.I., Modeling of the water permeability of alloys for membrane gas separation, Komp. Issled. Model., 2016, vol. 8, no. 1, pp. 121–125.

    Google Scholar 

  9. Phair, J.W. and Donelson, R., Developments and design of novel (non-palladium-based) metal membranes for hydrogen separation, Ind. Eng. Chem. Res., 2006, vol. 45, pp. 5657–5664. https://doi.org/10.1021/ie051333d

    Article  CAS  Google Scholar 

  10. Kozhakhmetov, S., Sidorov, N., Piven, V., Sipatov, I., Gabis, I., and Arinov, B., Alloys based on Group 5 metals for hydrogen purification membranes, J. Alloys Compd., 2015, vol. 645, pp. S36–S49. https://doi.org/10.1016/j.jallcom.2015.01.242

    Article  CAS  Google Scholar 

  11. Adhikari, S. and Fernando, S., Hydrogen membrane separation techniques, Ind. Eng. Chem. Res., 2006, vol. 45, pp. 875–887.

    Article  CAS  Google Scholar 

  12. Sasaki K., Hattori M., Tsuchimoto K., Yukawa H., Arai S., Tokunaga T., Murata, Y., and Yamamoto, T., Microstructural analysis of thermal degradation of palladium-coated niobium membrane, J. Alloys Compd., 2013, vol. 573, pp. 192–197. https://doi.org/10.1016/j.jallcom.2013.04.037

    Article  CAS  Google Scholar 

  13. Gabis, I.E., Kurdyumov, A.A., and Sorokin, V.G., Hydrogen diffusion and permeation through cobalt foil, Fiz.-Khim. Mekh. Mater., 1991, vol. 3, pp. 124–128.

    Google Scholar 

  14. Dolan, M.D., Song, G., Liang, D., Kellam, M.E., Chandra, D., and Lamb, J.H., Hydrogen transport through V85Ni10M5 alloy membranes, J. Membr. Sci., 2011, vol. 373, nos. 1–2. https://doi.org/10.1016/j.memsci.2011.02.028

    Google Scholar 

  15. Nishimura, C., Komaki, M., Hwang, S., and Amano, M., V–Ni alloy membranes for hydrogen purification, J. Alloys Compd., 2002, vols. 330–332, pp. 902–911.

    Article  Google Scholar 

  16. Song, G., Kellam, M.E., Liang, D., and Dolan, M.D., Influence of processing conditions on the microstructure and permeability of BCC V—Ni membranes, J. Membr. Sci., 2010, vol. 363, pp. 309–314. https://doi.org/10.1016/j.memsci.2010.07.051

    Article  CAS  Google Scholar 

  17. Sipatov, I.S., Sidorov, N.I., Pastukhov, E.A., Gabis, I.E., Piven’, V.A., Esin, A.A., Pryanichnikov, S.V., and Vostryakov, A.A., Hydrogen permeability and structure of vanadium alloy membranes, Membr. Membr. Tekhnol., 2016, vol. 7, no. 3, pp. 1–19. https://doi.org/10.1134/S2218117217030105

    Google Scholar 

  18. DIFFRACPlus: Eva, Karlsruhe: Bruker AXS GmbH, 2008.

  19. DIFFRACPlus: TOPAS, Karlsruhe: Bruker AXS GmbH, 2008.

  20. Powder Diffraction File PDF4+ ICDD, Release 2014.

  21. Laugier, J. and Bochu, B., LMGP-Suite of Programs for the Interpretation of X-Ray Experiments. ENSP, Grenoble: Laboratoire Materiaux genie physique, 2003.

    Google Scholar 

  22. Rietveld, H.M., Profile refinement method for nuclear and magnetic structures, J. Appl. Crystallogr., 1969, vol. 2, pp. 65–72.

    Article  CAS  Google Scholar 

  23. Sipatov, I., Sidorov, N., Pryanichnikov, S., and Pastukhov, E., Structure and properties study of V-based membrane alloys for ultra-high purity hydrogen production, AIP Conf. Proc., 2016, vol. 1767, paper 020 031. https://doi.org/10.1063/1.4962615.

  24. Ozaki, T., Zhang, Y., Komaki, M., and Nishimura, C., Hydrogen permeation characteristics of V–Ni–Al alloys, Int. J. Hydrogen Energy, 2003, vol. 28, pp. 1229–1234.

    Article  CAS  Google Scholar 

  25. Moulder, J.F., Stickle, W.F., Sobol, P.E., and Bomben, K.D., Handbook of X-Ray Photoelectron Spectroscopy, Perkin-Elmer, 1992.

    Google Scholar 

  26. Biesinger, M.C., Payne, B.P., Lau, L.W.M., Gerson, A., and Smart, R.S.C., X-ray photoelectron spectroscopic chemical state quantification of mixed nickel metal, oxide and hydroxide systems, Surf. Interface Anal., 2009, vol. 41, pp. 324–337. https://doi.org/10.1002/sia.3026

    Article  CAS  Google Scholar 

  27. Biesinger, M.C., Lau, L.W.M., Gerson, A.R., and Smart, R.S.C., Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Sc, Ti, V, Cu and Zn, Appl. Surf. Sci., 2010, vol. 257, pp. 887–901. https://doi.org/10.1016/j.apsusc.2010.07.086

    Article  CAS  Google Scholar 

  28. Sipatov, I., Pastukhov, E., Fetisov, A., Zvonarev, S., and Melchakov, S.,. Structure and properties of V90Co10 membrane alloy, AIP Conf, Proc., 2017, vol. 1886, paper 20 020. https://doi.org/10.1063/1.5002917.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. S. Sipatov.

Additional information

Original Russian Text © I.S. Sipatov, N.I. Sidorov, S.A. Petrova, A.B. Shubin, E.A. Pastukhov, A.V. Fetisov, A.A. Esin, A.A. Vostryakov, 2018, published in Neorganicheskie Materialy, 2018, Vol. 54, No. 7, pp. 681–687.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sipatov, I.S., Sidorov, N.I., Petrova, S.A. et al. Influence of Processing Techniques on the Surface Microstructure of V85Ni15 Membrane Alloy. Inorg Mater 54, 645–651 (2018). https://doi.org/10.1134/S0020168518070178

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168518070178

Keywords

Navigation