Skip to main content
Log in

Catalytic Activity of Li1 + xHf2–xInx(PO4)3-Based NASICON-Type Materials for Ethanol Conversion Reactions

  • Published:
Inorganic Materials Aims and scope

Abstract

Li1 + xHf2–xInx(PO4)3 (x = 0, 0.05, 0.1) materials have been prepared by solid-state reactions and characterized by X-ray diffraction, low-temperature nitrogen adsorption measurements, and scanning electron microscopy. The materials consist of NASICON-type lithium hafnium double phosphates with a hexagonal structure. Milling in a planetary mill has been found to increase the specific surface area of the Li1 + xHf2–xInx(PO4)3 materials by almost one order of magnitude (from 1.5 to 13 m2/g in the case of LiHf2(PO4)3). The materials with a larger surface area exhibit catalytic activity for ethanol dehydration reactions and are less active for ethanol dehydrogenation. Ethanol conversion predominantly yields diethyl ether at low temperatures and ethylene at higher temperatures. The diethyl ether selectivity of the catalytic processes reaches 85% at 350°C, with 60% conversion, and the ethylene selectivity reaches 96% at 510°C, with 100% conversion. Indium doping raises the high-temperature acetaldehyde selectivity from 4 to 8% and leads to the formation of C4 hydrocarbons as reaction products. C4 selectivity reaches 15 and 17% in the case of the Li1.05Hf1.95In0.05(PO4)3 and Li1.1Hf1.9In0.1(PO4)3 materials, respectively (420°C, 97 and 92% conversion, respectively).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yaroslavtsev, A.B. and Stenina, I.A., Complex phosphates with the NASICON structure (MxA2(PO4)3), Russ. J. Inorg. Chem., 2006, vol. 51, pp. S97–S116.

    Article  Google Scholar 

  2. Pet’kov, V.I., Mixed phosphates of metal cations in the oxidation states I and IV, Russ. Chem. Rev., 2012, vol. 81, no. 7, pp. 606–637.

    Article  CAS  Google Scholar 

  3. Anantharamulu, N., Rao, K.K., Rambabu, G., Kumar, B.V., Radha, V., and Vithal, M., A wide-ranging review on Nasicon type materials, J. Mater. Sci., 2011, vol. 46, no. 9, pp. 2821–2837.

    Article  CAS  Google Scholar 

  4. Jian, Z., Hu, Y.-S., Ji, X., and Chen, W., NASICONstructured materials for energy storage, Adv. Mater., 2017, vol. 29, no. 20, paper 1 601 925.

    Google Scholar 

  5. Goodenough, J.B., Hong, H.Y.-P., and Kafalas, J.A., Fast Na+-ion transport in skeleton structures, Mater. Res. Bull., 1976, vol. 11, pp. 203–220.

    Article  CAS  Google Scholar 

  6. Noguchi, Y., Kobayashi, E., Plashnitsa, L.S., Okada, Sh., and Yamaki, J., Fabrication and performances of all solid-state symmetric sodium battery based on NASICON-related compounds, Electrochim. Acta, 2013, vol. 101, pp. 59–65.

    Article  CAS  Google Scholar 

  7. Naqash, S., Ma, Q., Tietz, F., and Guillon, O., Na3Zr2(SiO4)2(PO4) prepared by a solution-assisted solid state reaction, Solid State Ionics, 2017, vol. 302, pp. 83–91.

    Article  CAS  Google Scholar 

  8. Safronov, D.V., Stenina, I.A., Maksimychev, A.V., Shestakov, S.L., and Yaroslavtsev, A.B., Phase transitions and ion transport in NASICON materials of composition Li1 + xZr2–xInx(PO4)3 (x = 0–1), Russ. J. Inorg. Chem., 2009, vol. 54, no. 11, pp. 1697–1703.

    Article  Google Scholar 

  9. Knauth, Ph., Inorganic solid Li ion conductors: an overview, Solid State Ionics, 2009, vol. 180, pp. 911–916.

    Article  CAS  Google Scholar 

  10. Svitan’ko, A.I., Novikova, S.A., Safronov, D.V., and Yaroslavtsev, A.B., Cation mobility in Li1 + xTi2–x-Crx(PO4)3 NASICON-type phosphates, Inorg. Mater., 2011, vol. 47, no. 12, pp. 1391–1395.

    Article  CAS  Google Scholar 

  11. Kotobuki, M. and Koishi, M., Sol–gel synthesis of Li1.5Al0.5Ge1.5(PO4)3 solid electrolyte, Ceram. Int., 2015, vol. 41, pp. 8562–8567.

    Article  CAS  Google Scholar 

  12. Moshareva, M.A. and Novikova, S.A., Synthesis and conductivity study of solid electrolytes Li1+ xAlxGe2–x(PO4)3 (x = 0–0.65), Russ. J. Inorg. Chem., 2018, vol. 63, no. 3, pp. 319–323.

    Article  CAS  Google Scholar 

  13. Voropaeva, D.Yu., Moshareva, M.A., Ilin, A.B., Novikova, S.A., and Yaroslavtsev, A.B., Phase transitions and proton conductivity in hafnium hydrogen phosphate with the NASICON structure, Mendeleev Commun., 2016, vol. 26, pp. 152–153.

    Article  CAS  Google Scholar 

  14. Moshareva, M.A., Novikova, S.A., and Yaroslavtsev, A.B., Synthesis and ionic conductivity of (NH4)1–xHx-Hf2(PO4)3 (x = 0–1) NASICON-type materials, Inorg. Mater., 2016, vol. 52, no. 12, pp. 1283–1290.

    Article  CAS  Google Scholar 

  15. Stenina, I.A. and Yaroslavtsev, A.B., Low-and intermediate-temperature proton-conducting electrolytes, Inorg. Mater., 2017, vol. 53, no. 3, pp. 253–262.

    Article  CAS  Google Scholar 

  16. Chekannikov, A., Kapaev, R., Novikova, S., Tabachkova, N., Kulova, T., Skundin, A., and Yaroslavtsev, A., Na3V2(PO4)3/C/Ag nanocomposite materials for Naion batteries obtained by the modified Pechini method, J. Solid State Electrochem., 2017, vol. 21, no. 6, pp. 1615–1624.

    Article  CAS  Google Scholar 

  17. Hirose, N. and Kuwano, J., Ion-exchange properties of NASICON-type phosphates with the frameworks [Ti2(PO4)3] and [Ti1.7Al0.3(PO4)3], J. Mater. Chem., 1994, vol. 4, pp. 9–12.

    Article  CAS  Google Scholar 

  18. Agaskar, P., Grasselli, R., Buttrey, D., and White, B., Structural and catalytic aspects of some NASICONbased mixed metal phosphates, Stud. Surf. Sci. Catal., 1997, vol. 110, pp. 219–225.

    Article  CAS  Google Scholar 

  19. Orlova, A.I., Pet’kov, V.L., Gul’yanova, S.T., Ermilova, M.M., Ienealem, S.L., Samuilova, O.K., Chekhlova, T.K., and Gryaznov, V.M., The catalytic properties of new complex zirconium and iron orthophosphates, Russ. J. Phys. Chem. A, 1999, vol. 73, no. 11, pp. 1767–1769.

    Google Scholar 

  20. Brik, Y., Kacimi, M., Bozon-Verduraz, F., and Ziyad, M., Characterization of active sites on AgHf2(PO4)3 in butan-2-ol conversion, Microporous Mesoporous Mater., 2001, vol. 43, pp. 103–112.

    Article  CAS  Google Scholar 

  21. Il’in, A.B., Novikova, S.A., Sukhanov, M.V., Ermilova, M.M., Orekhova, N.V., and Yaroslavtsev, A.B., Catalytic activity of NASICON-type phosphates for ethanol dehydration and dehydrogenation, Inorg. Mater., 2012, vol. 48, no. 4, pp. 397–401.

    Article  CAS  Google Scholar 

  22. Ermilova, M.M., Sukhanov, M.V., Borisov, R.S., Orekhova, N.V., Pet’kov, V.I., Novikova, S.A., Il’in, A.B., and Yaroslavtsev, A.B., Synthesis of the new framework phosphates and their catalytic activity in ethanol conversion into hydrocarbons, Catal. Today, 2012, vol. 193, pp. 37–41.

    Article  CAS  Google Scholar 

  23. Pylinina, A.I. and Mikhalenko, I.I., Influence of compensator ions in the anionic part of Na3ZrM(PO4)3 phosphate with M = Zn, Co, Cu on the acidity and catalytic activity in reactions of butanol-2, Russ. J. Phys. Chem. A, 2013, vol. 87, no. 3, pp. 372–375.

    CAS  Google Scholar 

  24. Asabina, E.A., Pet’kov, V.I., Glukhova, I.O., Orekhova, N.V., Ermilova, M.M., Zhilyaeva, N.A., and Yaroslavtsev, A.B., Synthesis and catalytic properties of M0.5(1 + x)FexTi2–x(PO4)3 (M = Co, Ni, Cu; 0 ≤ x ≤ 2) for methanol conversion reactions, Inorg. Mater., 2015, vol. 51, no. 8, pp. 793–793.

    CAS  Google Scholar 

  25. Danilova, M.N., Pylinina, A.I., Kasatkin, E.M., Bratchikova, I.G., Mikhalenko, I.I., and Yagodovskii, V.D., Reactions of isobutanol over a NASICON-type Ni containing catalyst activated by plasma treatments, Kinet. Catal., 2015, vol. 56, no. 4, pp. 476–479.

    Article  CAS  Google Scholar 

  26. Bondarenko, G.N., Ermilova, M.M., Efimov, M.N., Zemtsov, L.M., Karpacheva, G.P., Mironova, E.Yu., Orekhova, N.V., Rodionov, A.S., and Yaroslavtsev, A.B., In situ IR spectroscopy study of ethanol steam reforming in the presence of Pt–Ru/DND nanocatalysts, Nanotechnol. Russ., 2016, vol. 11, nos. 11–12, pp. 727–737.

    Google Scholar 

  27. Il’in, A.B., Ermilova, M.M., Orekhova, N.V., and Yaroslavtsev, A.B., Synthesis of framework lithium zirconium molybdate phosphates and their catalytic properties in ethanol conversion reactions, Inorg. Mater., 2015, vol. 51, no. 7, pp. 711–717.

    Article  CAS  Google Scholar 

  28. Lytkina, A.A., Ilin, A.B., and Yaroslavtsev, A.B., Study of methanol steam reforming and ethanol conversion in conventional and membrane reactors, Petrol. Chem., 2016, vol. 56, no. 11, pp. 1048–1055.

    Article  CAS  Google Scholar 

  29. Ilin, A.B., Orekhova, N.V., Ermilova, M.M., and Yaroslavtsev, A.B., Catalytic activity of LiZr2(PO4)3 Nasicon-type phosphates in ethanol conversion process in conventional and membrane reactors, Catal. Today, 2016, vol. 268, pp. 29–36.

    Article  CAS  Google Scholar 

  30. Mitran, G., Mieritz, D.G., and Seo, D., Highly selective solid acid catalyst H1–xTi2(PO4)3–x(SO4)x for non-oxidative dehydrogenation of methanol and ethanol, Catalysts, 2017, vol. 7, pp. 95–98.

    Article  CAS  Google Scholar 

  31. Serghini, A., Brochu, R., Ziyad, M., and Vedrine, J.C., Behaviour of copper–zirconium Nasicon-type phosphate, CuIZr 2(PO4)3, in the decomposition of isopropyl alcohol, J. Chem. Soc., Faraday Trans., 1991, vol. 87, no. 15, pp. 2487–2493.

    Article  CAS  Google Scholar 

  32. Serghini, A., Brochu, R., Ziyad, M., and Vedrine, J.C., Synthesis, characterization and catalytic behaviour of Cu0.5M2(PO4)3 (M = Zr, Sn, Ti), J. Alloys Compd., 1992, vol. 188, pp. 60–64.

    Article  CAS  Google Scholar 

  33. Brik, Y., Kacimi, M., Bozon-Verduraz, F., and Ziyad, M., Characterization of active sites on AgHf2(PO4)3 in butan-2-ol conversion, Microporous Mesoporous Mater., 2001, vol. 43, pp. 103–112.

    Article  CAS  Google Scholar 

  34. Sukhanov, M.V., Ermilova, M.M., Orekhova, N.V., Pet’kov, V.I., and Tereshchenko, G.F., Catalytic properties of zirconium phosphate and double phosphates of zirconium and alkali metals with a NaZr2(PO4)3 structure, Russ. J. Appl. Chem., 2006, vol. 79, no. 4, pp. 614–618.

    Article  CAS  Google Scholar 

  35. Pet’kov, V.I., Sukhanov, M.V., Ermilova, M.M., Orekhova, N.V., and Tereshchenko, G.F., Development and synthesis of bulk and membrane catalysts based on framework phosphates and molybdates, Russ. J. Appl. Chem., 2010, vol. 83, no. 10, pp. 1731–1741.

    Article  CAS  Google Scholar 

  36. Moshareva, M.A., Il’in, A.B., Zhilyaeva, N.A., Novikova, S.A., and Yaroslavtsev, A.B., Catalytic activity of materials based on complex hafnium phosphates with the NASICON structure in ethanol conversion, Nanotechnol. Russ., 2017, vol. 12, nos. 9–10, pp. 514–519.

    Article  CAS  Google Scholar 

  37. Zonetti, P.C., Celnik, J., Letichevsky, S., Gaspar, A.B., and Appel, L.G., Chemicals from ethanol—the dehydrogenative route of the ethyl acetate one-pot synthesis, J. Mol. Catal. A: Chem., 2011, vol. 334, pp. 29–34.

    Article  CAS  Google Scholar 

  38. Sun, J. and Wang, Y., Recent advances in catalytic conversion of ethanol to chemicals, ACS Catal., 2014, vol. 4, pp. 1078–1090.

    Article  CAS  Google Scholar 

  39. Matsumura, Y., Hashimoto, K., and Yoshida, S., Selective dehydrogenation of ethanol to acetaldehyde over silicalite-1, J. Catal., 1990, vol. 122, pp. 352–361.

    Article  CAS  Google Scholar 

  40. Takei, T., Iguchi, N., and Haruta, M., Support effect in the gas phase oxidation of ethanol over nanoparticulate gold catalysts, New J. Chem., 2011, vol. 35, pp. 2227–2233.

    Article  CAS  Google Scholar 

  41. Liu, P., Zhu, X., Yang, S., Li, T., and Hensen, E.J.M., On the metal–support synergy for selective gas-phase ethanol oxidation over MgCuCr2O4 supported metal nanoparticle catalysts, J. Catal., 2015, vol. 331, pp. 138–146.

    Article  CAS  Google Scholar 

  42. Santacesaria, E., Carotenuto, G., Tesser, R., and Di Serio, M., Ethanol dehydrogenation to ethyl acetate by using copper and copper chromite catalysts, Eng. J., 2012, vol. 179, pp. 209–220.

    CAS  Google Scholar 

  43. Nikolaev, S.A., Chudakova, M.V., Chistyakov, A.V., Kriventsov, V.V., and Tsodikov, M.V., Reductive dehydration of ethanol to hydrocarbons on Ni-and Au-containing nanocomposites, Nanotechnol. Russ., 2012, vol. 7, nos. 7–8, pp. 327–338.

    Article  Google Scholar 

  44. Mironova, E.Yu., Ermilova, M.M., Orekhova, N.V., Muraviev, D.N., and Yaroslavtsev, A.B., Production of high purity hydrogen by ethanol steam reforming in membrane reactor, Catal. Today, 2014, vol. 236, pp. 64–69.

    Article  CAS  Google Scholar 

  45. Lytkina, A.A., Zhilyaeva, N.A., Ermilova, M.M., and Yaroslavtsev, A.B., Influence of the support structure and composition of Ni–Cu-based catalysts on hydrogen production by methanol steam reforming, Int. J. Hydrogen Energy, 2015, vol. 40, no. 31, pp. 9677–9684.

    Article  CAS  Google Scholar 

  46. Shannon, R.D., Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides, Acta Crystallogr., Sect. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr., 1976, vol. 32, no. 5, pp. 751–767.

    Article  Google Scholar 

  47. Boldyrev, V.V., Mechanochemistry and mechanical activation of solids, Russ. Chem. Rev., 2006, vol. 75, pp. 177–189.

    Article  CAS  Google Scholar 

  48. Maier, J., Defect chemistry and ion transport in nanostructured materials: Part II. Aspects of nanoionics, Solid State Ionics, 2003, vol. 157, pp. 327–334.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. B. Yaroslavtsev.

Additional information

Original Russian Text © S.A. Novikova, A.B. Il’in, N.A. Zhilyaeva, A.B. Yaroslavtsev, 2018, published in Neorganicheskie Materialy, 2018, Vol. 54, No. 7, pp. 713–720.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Novikova, S.A., Il’in, A.B., Zhilyaeva, N.A. et al. Catalytic Activity of Li1 + xHf2–xInx(PO4)3-Based NASICON-Type Materials for Ethanol Conversion Reactions. Inorg Mater 54, 676–682 (2018). https://doi.org/10.1134/S0020168518070117

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168518070117

Keywords

Navigation