Skip to main content
Log in

A New Ti9O10 Nanophase Prepared by Heat-Treating Nonstoichiometric Milled TiO y Nanopowder

  • Published:
Inorganic Materials Aims and scope

Abstract

A Ti9O10 nanophase (sp. gr. Immm) has been synthesized via high-energy milling followed by prolonged high-temperature vacuum heat treatment of nonstoichiometric TiO y titanium monoxide. The atomic structure and microstructure of Ti9O10 have been investigated by X-ray powder diffraction and high-resolution transmission electron microscopy. According to quantum-chemical calculation results, macrocrystalline Ti9O10 is less energetically favorable than a disordered cubic phase of the same composition, TiO10/9, so the formation of the former phase is due to size effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rempel’, A.A., Atom–vacancy ordering effects in nonstoichiometric compounds, Usp. Fiz. Nauk, 1996, vol. 166, pp. 33–62.

    Article  Google Scholar 

  2. Kostenko, M.G., Rempel, A.A., Sharf, S.V., and Lukoyanov, A.V., Inclusion of the correlation shortrange order in ab initio calculations of the energy of the ground state by example of titanium monoxide TiO1.0, JETP Lett., 2015, vol. 102, no. 2, pp. 85–89.

    Article  CAS  Google Scholar 

  3. Kostenko, M.G., Valeeva, A.A., and Rempel’, A.A., Relationship between short-and long-range orders in nonstoichiometric titanium monoxide (TiOy), J. Exp. Theor. Phys., 2010, vol. 111, no. 5, pp. 786–795.

    Article  CAS  Google Scholar 

  4. Kostenko, M.G and Rempel, A.A., Probabilities of octahedral clusters depending on long-range order parameters and composition in nonstoichiometric titanium monoxide TiOy, J. Exp. Theor. Phys., 2012, vol. 115, no. 6, pp. 999–1007.

    Article  CAS  Google Scholar 

  5. Gusev, A.I., A sequence of transformations related to the formation of M3X2-type superstructures, J. Exp. Theor. Phys., 2015, vol. 120, no. 1, pp. 91–96.

    Article  CAS  Google Scholar 

  6. Gusev, A.I., Family of Ti5O5 superstructures, J. Exp. Theor. Phys., 2015, vol. 120, no. 5, pp. 851–859.

    Article  CAS  Google Scholar 

  7. Kostenko, M.G., Rempel, A.A., and Lukoyanov, A.V., Internal energy and parameters of the order–disorder phase transition in titanium monoxide TiOy, J. Exp. Theor. Phys., 2013, vol. 116, no. 6, pp. 945–951.

    Article  CAS  Google Scholar 

  8. Andersson, S., Collen, B., Kuylenstierna, U., and Magneli, A., Phase-analysis studies on the titanium–oxygen system, Acta Chem. Scand., 1957, vol. 11, no. 10, pp. 1641–1652.

    Article  CAS  Google Scholar 

  9. Banus, M.D. and Reed, T.B., The Chemistry of Extended Defects in Non-Metallic Solids, Eyring, L. and Keeffe, M.O., Eds., Amsterdam: North-Holland, 1970, pp. 488–521.

  10. Watanabe, D., Castles, J.R., Jostson, A., and Malin, A.S., Ordered structure of titanium oxide, Nature, 1966, vol. 210, no. 5039, pp. 934–936.

    Article  CAS  Google Scholar 

  11. Watanabe, D., Castles, J.R., Jostsons, A., and Malin, A.S., The ordered structure of TiO, Acta Crystallogr., 1967, vol. 23, no. 2, pp. 307–313.

    Article  CAS  Google Scholar 

  12. Valeeva, A.A., Rempel’, A.A., and Gusev, A.I., Twosublattice ordering in titanium monoxide, JETP Lett., 2000, vol. 71, no. 11, pp. 460–464.

    Article  CAS  Google Scholar 

  13. Valeeva, A.A., Rempel, A.A., Sprengel, W., and Schaefer, H.-E., Vacancies on the Ti sublattice in titanium monoxide TiOy studied using positron annihilation techniques, Phys. Rev. B: Condens. Matter Mater. Phys., 2007, vol. 75, paper 094107.

  14. Hilti, E., Neue Phasen in System Titan–Sauerstoff, Naturwissenschaften, 1968, vol. 55, no. 3, pp. 130–131.

    Article  CAS  Google Scholar 

  15. Gusev, A.I. and Valeeva, A.A., Diffraction of electrons in the cubic Ti5O5 superstructure of titanium monoxide, JETP Lett., 2012, vol. 96, no. 6, pp. 364–369.

    Article  CAS  Google Scholar 

  16. Khaenko, B.V. and Kachkovskaya, E.T., Ordering and phase relations in the Ti–O system near titanium monoxide, Poroshk. Metall. (Kiev), 1986, no. 6, pp. 52–59.

    Google Scholar 

  17. Okamoto, H., O–Ti (oxygen–titanium), J. Phase Equilib. Diffus., 2011, vol. 32, pp. 473–474.

    Article  CAS  Google Scholar 

  18. Valeeva, A.A., Nazarova, S.Z., and Rempel, A.A., Influence of particle size, stoichiometry, and degree of long-range order on magnetic susceptibility of titanium monoxide, Phys. Solid State, 2016, vol. 58, no. 4, pp. 747–753.

    Article  CAS  Google Scholar 

  19. Valeeva, A.A., Nazarova, S.Z., and Rempel, A.A., Size effect on magnetic susceptibility of titanium monoxide nanocrystals, Phys. Status Solidi B, 2016, vol. 253, no. 2, pp. 392–396.

    Article  CAS  Google Scholar 

  20. Valeeva, A.A., Nazarova, S.Z., and Rempel, A.A., In situ study of atomic-vacancy ordering in stoichiometric titanium monoxide by the magnetic susceptibility, JETP Lett., 2015, vol. 101, no. 4, pp. 258–263.

    Article  CAS  Google Scholar 

  21. Kostenko, M.G. and Rempel’, A.A., Electrostatic stabilization of an ordered phase in titanium monoxide, Phys. Solid State, 2010, vol. 52, no. 4, pp. 776–780.

    Article  CAS  Google Scholar 

  22. Schaefer, H.-E., Nanoscience, Berlin: Springer, 2010.

    Book  Google Scholar 

  23. Hall, W.H., X-ray line broadening in metals, Proc. Phys. Soc., London, Sect. A, 1949, vol. 69, part 11, no. 359, pp. 741–743.

    Article  Google Scholar 

  24. Hall, W.H. and Williamson, G.K., The diffraction pattern of cold worked metals: I. The nature of extinction, Proc. Phys. Soc., London, Sect. B, 1951, vol. 64, part 11, no. 383, pp. 937–946.

    Article  Google Scholar 

  25. Valeeva, A.A., Petrovykh, K.A., Schroettner, H., and Rempel, A.A., Effect of stoichiometry on the size of titanium monoxide nanoparticles produced by fragmentation, Inorg. Mater., 2015, vol. 51, no. 11, pp. 1132–1137.

    Article  CAS  Google Scholar 

  26. Gusev, A.I., Ordered orthorhombic phases of titanium monoxide, JETP Lett., 2001, vol. 74, no. 2, pp. 91–95.

    Article  CAS  Google Scholar 

  27. Kohn, W. and Sham, L.J., Self-consistent equations including exchange and correlation effects, Phys. Rev., 1965, vol. 140, pp. A1133–A1138.

    Article  Google Scholar 

  28. Jones, R.O. and Gunnarsson, O., The density functional formalism, its applications and prospects, Rev. Mod. Phys., 1989, vol. 61, pp. 689–746.

    Article  CAS  Google Scholar 

  29. Perdew, J.P., Burke, K., and Ernzerhof, M., Generalized gradient approximation made simple, Phys. Rev. Lett., 1996, vol. 77, pp. 3865–3868.

    Article  CAS  Google Scholar 

  30. Giannozzi, P., Baroni, S., Bonini, N., et al., Quantum ESPRESSO: a modular and open-source software project for quantum simulations of materials, J. Phys. Condens. Matter, 2009, vol. 21, paper 395502.

  31. Payne, M.C., Teter, M.P., Allan, D.C., Arias, T.A., and Joannopoulos, J.D., Iterative minimization techniques for ab initio total-energy calculations: molecular dynamics and conjugate gradients, Rev. Mod. Phys., 1992, vol. 64, pp. 1045–1097.

    Article  CAS  Google Scholar 

  32. Andersson, D.A., Korzhavyi, P.A., and Johansson, B., Thermodynamics of structural vacancies in titanium monoxide from first-principles calculations, Phys. Rev. B: Condens. Matter Mater. Phys., 2005, vol. 71, paper 144101.

  33. Graciani, J., Márquez, A., and Fdez, J.S., Role of vacancies in the structural stability of a-TiO: a firstprinciples study based on density-functional calculations, Phys. Rev. B: Condens. Matter Mater. Phys., 2005, vol. 72, paper 054117.

  34. Kostenko, M.G., Lukoyanov, A.V., Zhukov, V.P., and Rempel, A.A., Vacancies in ordered and disordered titanium monoxide: mechanism of B1 structure stabilization, J. Solid State Chem., 2013, vol. 204, pp. 146–152.

    Article  CAS  Google Scholar 

  35. Kostenko, M.G., Lukoyanov, A.V., Zhukov, V.P., and Rempel, A.A., Effect of the long-range order in the vacancy distribution on the electron structure of titanium monoxide TiO1.0, JETP Lett., 2012, vol. 96, no. 8, pp. 507–510.

    Article  CAS  Google Scholar 

  36. Kostenko, M.G., Rempel, A.A., Sharf, S.V., and Lukoyanov, A.V., Simulation of the short-range order in disordered cubic titanium monoxide TiO1.0, JETP Lett., 2013, vol. 97, no. 11, pp. 616–620.

    Article  CAS  Google Scholar 

  37. Kostenko, M.G. and Rempel’, A.A., Short-range order and nonstoichiometry in titanium monoxide TiOy from DFT calculations, Phys. Solid State, 2017, vol. 59, no. 4, pp. 644–651.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Rempel.

Additional information

Original Russian Text © A.A. Valeeva, M.G. Kostenko, S.Z. Nazarova, E.Yu. Gerasimov, A.A. Rempel, 2018, published in Neorganicheskie Materialy, 2018, Vol. 54, No. 6, pp. 597–604.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Valeeva, A.A., Kostenko, M.G., Nazarova, S.Z. et al. A New Ti9O10 Nanophase Prepared by Heat-Treating Nonstoichiometric Milled TiO y Nanopowder. Inorg Mater 54, 568–574 (2018). https://doi.org/10.1134/S0020168518060158

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168518060158

Keywords

Navigation