Skip to main content
Log in

Photoelectric Fields and Band Gap in Doped Lithium Niobate Crystals

  • Published:
Inorganic Materials Aims and scope

Abstract

Photoinduced light scattering and optical spectroscopy have been used to study the photorefractive effect and determine the band gap in nominally undoped congruent and stoichiometric lithium niobate crystals, as well as in a series of congruent LiNbO3 crystals doped with Mg, Zn, B, Gd, Y, and Er cations and LiNbO3 single crystals codoped with Mg:Gd, Mg:Fe, Mg:Y, and Mg:Ta.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kuz'minov, Yu.S., Elektroopticheskii i nelineino-opticheskii kristall niobata litiya (Electro-Optic and Nonlinear Optical Lithium Niobate Crystals), Moscow: Nauka, 1987.

    Google Scholar 

  2. Blistanov, A.A., Kristally kvantovoi i nelineinoi optiki (Crystals for Quantum and Nonlinear Optics), Moscow: Mosk. Inst. Stali i Splavov, 2000.

    Google Scholar 

  3. Sidorov, N.V., Volk, T.R., Mavrin, B.N., and Kalinnikov, V.T., Niobat litiya: defekty, fotorefraktsiya, kolebatel’nyi spektr, polyaritony (Lithium Niobate: Defects, Photorefractive Properties, Vibrational Spectrum, and Polaritons), Moscow: Nauka, 2003.

    Google Scholar 

  4. Volk, T. and Wohlecke, M., Lithium Niobate. Defects, Photorefraction and Ferroelectric Switching, Berlin: Springer, 2008.

    Google Scholar 

  5. Blistanov, A.A., Lyubchenko, V.M., and Goryunova, A.N., Recombination processes in LiNbO3 crystals, Crystallogr. Rep., 1998, vol. 43, no. 1, pp. 78–82.

    Google Scholar 

  6. Lines, M.E. and Glass, A.M., Principles and Application of Ferroelectrics and Related Materials, Oxford: Clarendon, 1977.

    Google Scholar 

  7. Obukhovskii, V.V., Photorefractive light scattering processes in crystals, Extended Abstract of Doctoral (Phys.–Math.) Dissertation, Kiev, 1989.

    Google Scholar 

  8. Maksimenko, V.A., Syuy, A.V., and Karpets, Yu.M., Fotoindutsirovannye protsessy v kristallakh niobata litiya (Photoinduced Processes in Lithium Niobate Crystals), Moscow: FIZMATLIT, 2008.

    Google Scholar 

  9. Pritulenko, A.S., Yatsenko, A.V., and Evdokimov, S.V., Analysis of the nature of electrical conductivity in nominally undoped LiNbO3 crystals, Crystallogr. Rep., 2015, vol. 60, no. 2, pp. 267–272.

    Article  CAS  Google Scholar 

  10. Yatsenko, A.V., Yevdokimov, S.V., Pritulenko, A.S., Sugak, D.Yu., and Solskii, I.M., Electrical properties of LiNbO3 crystals reduced in a hydrogen atmosphere, Phys. Solid State, 2012, vol. 54, pp. 2231–2235.

    Article  CAS  Google Scholar 

  11. Weidenfelder, A., Shi, J., Fielitz, P., Borchardt, G., Becker, K.D., and Fritze, H., Electrical and electromechanical properties of stoichiometric lithium niobate at high-temperatures, Solid State Ionics, 2012, vol. 225, pp. 26–29.

    Article  CAS  Google Scholar 

  12. Sidorov, N.V., Antonycheva, E.A., Syuy, A.V., and Palatnikov, M.N., Photorefractive properties of stoichiometric lithium niobate crystals, Crystallogr. Rep., 2010, vol. 55, no. 6, pp. 1019–1024.

    Article  CAS  Google Scholar 

  13. Palatnikov, M.N., Sandler, V.A., Sidorov, N.V., Biryukova, I.V., and Makarova, O.V., Physicochemical, dielectric, and piezoelectric properties and conductivity of LiNbO3: ZnO crystals (4.02–8.91 mol %), Tech. Phys., 2017, vol. 62, no. 1, pp. 82–89.

    Article  CAS  Google Scholar 

  14. Sidorov, N.V., Teplyakova, N.A., Yanichev, A.A., Palatnikov, M.N., Makarova, O.V., Aleshina, L.A., and Kadetova, A.V., Structure and optical properties of LiNbO3:ZnO (3.43–5.84 mol %) crystals, Inorg. Mater., 2017, vol. 53, no. 5, pp. 489–495.

    Article  CAS  Google Scholar 

  15. Sidorov, N.V., Palatnikov, M.N., Yanichev, A.A., Titov, R.A., and Teplyakova, N.A., Structural disorder and optical properties of congruent lithium niobate crystals doped with zinc and boron, Opt. Spectrosc., 2016, vol. 121, no. 1, pp. 40–49.

    Article  CAS  Google Scholar 

  16. Syuy, A.V., Sidorov, N.V., Gaponov, A.Y., Palatnikov, M.N., and Efremenko, V.G., Determination of photoelectric fields in a lithium niobate crystal by parameters of indicatrix of photoinduced scattered radiation, Optik, 2013, vol. 124, pp. 5259–5261.

    Article  CAS  Google Scholar 

  17. Syuy, A.V., Sidorov, N.V., Palatnikov, M.N., Shtarev, D.S., Antonycheva, E.A., Gaponov, A.Yu., and Chekhonin, K.A., Photoelectric fields in lithium niobate crystals, Opt. Zh., 2015, vol. 82, no. 5, pp. 71–75.

    Google Scholar 

  18. Sidorov, N.V., Palatnikov, M.N., Kruk, A.A., Yanichev, A.A., Makarova, O.V., Teplyakova, N.A., and Pikoul, O.Yu., Optical properties of LiNbO3:Mg(5.21mol %) and LiNbO3:Fe(0.009 mol %): Mg(5.04 mol %) crystals, Opt. Spectrosc., 2014, vol. 116, no. 2, pp. 274–280.

    Article  CAS  Google Scholar 

  19. Palatnikov, M.N., Sidorov, N.V., and Makarova, O.V., Optical properties of lithium niobate single crystals of various compositions, Vestn. Kol’skogo Nauchnogo Tsentra Ross. Akad. Nauk, 2016, vol. 27, no. 4, pp. 99–107.

    Google Scholar 

  20. Palatnikov, M.N., Biryukova, I.V., Sidorov, N.V., Denisov, A.V., Kalinnikov, V.T., Smith, P.G.R., and Shur, V.Ya., Growth and concentration dependencies of rare-earth doped lithium niobate single crystals, J. Cryst. Growth, 2006, vol. 291, pp. 390–397.

    Article  CAS  Google Scholar 

  21. Palatnikov, M.N., Sidorov, N.V., Biryukova, I.V., Shcherbina, O.B., and Kalinnikov, V.T., Granulated starting mixture for the growth of lithium niobate single crystals, Perspekt. Mater., 2011, no. 2, pp. 93–97.

    Google Scholar 

  22. Palatnikov, M.N., Biryukova, I.V., Masloboeva, S.M., Makarova, O.V., Manukovskaya, D.V., and Sidorov, N.V., The search of homogeneity of LiNbO3 crystals grown of charge with different genesis, J. Cryst. Growth, 2014, vol. 386, pp. 113–118.

    Article  CAS  Google Scholar 

  23. Goulkov, M., Imlau, M., and Woike, Th., Photorefractive parameters of lithium niobate crystals from photoinduced light scattering, Phys. Rev. B: Condens. Matter Mater. Phys., 2008, vol. 77, paper 235110.

  24. Kruk, A.A., Structural disorder and optical processes in lithium niobate crystals with a weak photorefraction effect, Extended Abstract of Cand. Sci. (Phys.–Math.) Dissertation, Apatity, 2015.

    Google Scholar 

  25. Akhmadullin, I.Sh., Golenishchev-Kutuzov, V.A., Migachev, S.A., and Mironov, S.P., Low-temperature electrical conductivity of congruent lithium niobate crystals, Fiz. Tverd. Tela (S.-Peterburg), 1998, vol. 40, no. 7, pp. 1307–1309.

    CAS  Google Scholar 

  26. Kanaev, I.F. and Malinovskii, V.K., Conductivity asymmetry along the polarization axis in ferroelectric crystals, Dokl. Akad. Nauk SSSR, 1982, vol. 266, no. 6, pp. 137–145.

    Google Scholar 

  27. Palatnikov, M.N., Biryukova, I.V., Shcherbina, O.B., Sidorov, N.V., Makarova, O.V., and Teplyakova, N.A., Growth of LiNbO3:Er crystals and concentration dependences of their properties, Crystallogr. Rep., 2016, vol. 61, no. 6, pp. 1031–1040.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. V. Sidorov.

Additional information

Original Russian Text © N.V. Sidorov, M.N. Palatnikov, N.A. Teplyakova, A.V. Syuy, E.O. Kile, D.S. Shtarev, 2018, published in Neorganicheskie Materialy, 2018, Vol. 54, No. 6, pp. 611–615.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sidorov, N.V., Palatnikov, M.N., Teplyakova, N.A. et al. Photoelectric Fields and Band Gap in Doped Lithium Niobate Crystals. Inorg Mater 54, 581–584 (2018). https://doi.org/10.1134/S0020168518060134

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168518060134

Keywords

Navigation