Skip to main content
Log in

Electrical Conductivity of a Carbon Reinforced Alumina Resistive Composite Material Based on Synthetic Graphite and Graphene

  • Published:
Inorganic Materials Aims and scope

Abstract

We have prepared samples of carbon reinforced alumina ceramics with different volume fractions of synthetic graphite (0–20%) and graphene (0–4%) and measured their electrical conductivity. It has been shown that increasing the volume percent of the conductive component increases the electrical conductivity of the samples from 10–8 to 2 × 10–3 S/cm. The results have been analyzed in terms of percolation theory and tunneling conduction theory. The synthetic graphite-based samples show linear current–voltage behavior and their electrical conductivity increases by a factor of 1.4 to 2.8 in the temperature range 300–550 K, with a sharp rise above 550 K. The temperature dependences of their electrical conductivity are analyzed in terms of hopping transport and thermally induced tunneling conduction mechanisms. The conclusion is made that the conduction mechanism in the corundum–carbon ceramics differs significantly from that in polymer composite materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. HVR International Ltd: High Voltage Resistors. www.hvrint.com.

  2. Bondar, A.M. and Iordach, I., Carbon/ceramic composites designed for electrical application, J. Optoelectron. Adv. Mater., 2006, vol. 8, no. 2, pp. 631–637.

    CAS  Google Scholar 

  3. Sharonov, I.A., Razyapov, E.R., Samoilov, V.M., Falomeikin, Yu.A., and Buchnev, L.M., Conductive corundum–carbon ceramics containing various types of carbon filler, Khim. Khim. Tekhnol., 2013, vol. 56, no. 7, pp. 120–122.

    CAS  Google Scholar 

  4. Sarkar, S. and Das, P.Kr., Processing and properties of carbon nanotube/alumina nanocomposites: a review, Rev. Adv. Mater. Sci., 2014, vol. 37, pp. 53–82.

    CAS  Google Scholar 

  5. Kirkpatrik, S., Percolation and conduction, Rev. Mod. Phys., 1973, vol. 45, no. 4, pp. 574–588.

    Article  Google Scholar 

  6. McLachlan, D.S. and Sauti, G., The ac and dc conductivity of nanocomposites. Review article, J. Nanomater., 2017, paper 30389. doi 10.1155/2007/30389

    Google Scholar 

  7. Ounaies, Z., Park, C., Wise, K.E., Siochi, E.J., and Harrison, J.S., Electrical properties of single wall carbon nanotube reinforced polyimide composites, Compos. Sci. Technol., 2013, vol. 63, pp. 1637–1646.

    Article  CAS  Google Scholar 

  8. Mamunya, Y., Carbon nanotubes as conductive filler in segregated polymer composites–electrical properties, in Carbon Nanotubes–Polymer Nanocomposites, 2011, pp. 173–196.

    Google Scholar 

  9. Barton, R.L., Keith, J.M., and King, J.A., Development and modeling of electrically conductive carbon filled liquid crystal polymer composites for fuel cell bipolar plate applications, J. New Mater. Electrochem. Syst., 2007, vol. 10, pp. 225–229.

    CAS  Google Scholar 

  10. Haobin, Z., Shunlun, H., Cao, C., Wenge, Z., and Qing, Y., Electrical conductivity of melt compounded functionalized graphene sheets filled polyethyleneterephthalate composites. http://www.intechopen.com/books/physics-and-applications-of-grapheneexperiments/electrical-conductivity-of-melt-compoundedfunctionalized-graphene-sheets-filledpolyethyleneterephe.

  11. Connor, T., Roy, S., Ezquerra, T.A., and Balta, F.J., Broadband ac conductivity of conductor–polymer composites, Phys. Rev., 1998, vol. 5, no. 4, pp. 713–717.

    Google Scholar 

  12. Linares, A., Canalda, C., Cagiao, M.E., Garci Gutie, M.C., Nogales, A., and Ezquerra, T.A., Broad-band electrical conductivity of high density polyethylene nanocomposites with carbon nanoadditives: multiwall carbon nanotubes and carbon nanofibers, Macromolecules, 2008, vol. 41, pp. 7090–7097.

    Article  CAS  Google Scholar 

  13. Niedermeier, W. and Fröhlich, J., Influence of structure and specific surface area of soft carbon blacks on the electrical resistance of filled rubber compounds, KGK Kautschuk, Gummi, Kunststoffe, 2003, no. 10, 519–524.

    Google Scholar 

  14. Kaleem, A., Wei, P., and Sui, L.S., Electrical conductivity and dielectric properties of multiwalled carbon nanotubes and alumina composites, Appl. Phys. Lett., 1989, paper 133122.

    Google Scholar 

  15. Iftikhar, A., Bahareh, Y., and Yanqiu, Z., Recent advances on carbon nanotubes and graphene reinforced ceramics nanocomposites, Nanomaterials, 2015, vol. 5, pp. 90–114.

    Article  CAS  Google Scholar 

  16. Lee, E., Choi, K.B., Lee, S., Kim, J., Jung, J., Baik, S., Lim, Y., Kim, S., and Shim, W., A scalable and facile synthesis of alumina/exfoliated graphite composites by attrition milling, RSC Adv., 2015, vol. 5, pp. 93267–93273.

    Article  CAS  Google Scholar 

  17. Porwal, H. and Grasso, S., Review of graphene–ceramic matrix composites, Adv. Appl. Ceram., 2013, vol. 112, no. 8, pp. 990–995.

    Article  CAS  Google Scholar 

  18. Fan, Y.C., Wang, L.J., Li, J.L., Li, J.Q., Sun, S.K., Chen, F., Chen, L.D., and Jiang, W., Recent progress in graphene based ceramic composites, Carbon, 2010, vol. 48, no. 6, pp. 1743–1749.

    Article  CAS  Google Scholar 

  19. Fan, Y., Jiang, W., and Kawasaki, A., Highly conductive few-layer graphene/Al2O3 nanocomposites with tunable charge carrier type, Adv. Functional Mater., 2012. doi 10.1002/adfm.201200632

    Google Scholar 

  20. Drozdova, M., Hussainova, I., Pérez-Coll, D., Aghayan, M., Ivanov, R., and Rodríguez, M.A., A novel approach to electroconductive ceramics filled by graphene covered nanofibers, Mater. Des., 2016, vol. 90, pp. 291–298.

    Article  CAS  Google Scholar 

  21. Lee, E., Choi, K.B., Lee, S., Kim, J., Jung, J., Baik, S., Lim, Y., Kim, S., and Shim, W., A scalable and facile synthesis of alumina/exfoliated graphite composites by attrition milling, RSC Adv., 2015, vol. 5, pp. 93267–93273.

    Article  CAS  Google Scholar 

  22. Cattani, M., Salvadori, M.C., and Teixeira, F.S., Insulator–conductor transition: a brief theoretical review, Macromolecules, 2010, vol. 53, pp. 8090–8097.

    Google Scholar 

  23. Bauhofer, W. and Kovacs, J., A review and analysis of electrical percolation in carbon nanotube polymer composites, Compos. Sci. Technol., 2008. doi 10.1016/j.compscitech.2008.06.018

    Google Scholar 

  24. Budnikov, P.P., Khimicheskaya tekhnologiya keramiki i ogneuporov (Chemical Technology of Ceramics and Refractories), Budnikov, P.P. and Poluboyarinov, D.N., Eds., Moscow: Stroizdat, 1972.

  25. Svoistva konstruktsionnykh materialov na osnove ugleroda. Spravochnik (Properties of Carbon-Based Structural Materials: A Handbook), Sosedov, V.P., Ed., Moscow: Metallurgiya, 1975.

  26. Samoilov, V.M., Nikolaeva, A.V., Danilov, E.A., Erpuleva, G.A., Trofimova, N.N., Abramchuk, S.S., and Ponkratov, K.V., Preparation of aqueous graphene suspensions by ultrasonication in the presence of a fluorine-containing surfactant, Inorg. Mater., 2015, vol. 51, no. 2, pp. 98–105.

    Article  CAS  Google Scholar 

  27. Balberg, I., Tunneling and nonuniversal conductivity in composite materials, Phys. Rev. Lett., 1987, vol. 59, pp. 1305–1309.

    Article  CAS  PubMed  Google Scholar 

  28. Srivastava, S., Kinoa, H., and Joachima, C., Contact conductance of a graphene nanoribbon with its graphene nano-electrodes, Nanoscale, 2016, vol. 8, pp. 9265–9271.

    Article  CAS  PubMed  Google Scholar 

  29. Coeuret, F., Electrical Conductivity of Carbon or Graphite Felts, https://www.electrochem.org/dl/ma/203/pdfs/2277.pdf.

  30. Rey-Raap, N., Calvo, E.G., Bermudez, J.M., Camean, I., Garcia, A.B., and Menendez, J.A., An electrical conductivity translator for carbons, Measurement, 2014, vol. 56, pp. 215–218.

    Article  Google Scholar 

  31. Balberg, I., Azulay, D., Goldstein, Y., Jedrzejewski, J., Ravid, G., and Savir, E., The percolation staircase model and its manifestation in composite materials, Eur. Phys. J. B, 2013. doi 10.1140/epjb/e2013-40200-7

    Google Scholar 

  32. Kilbride, B., Coleman, J., Fraysse, J., Fournet, P., Cadek, M., Drury, A., Hutzler, S., Roth, S., and Blau, W., Experimental observation of scaling laws for alternating current and direct current conductivity in polymer-carbon nanotube composite thin films, J. Appl. Phys., 2002, vol. 92, no. 7, pp. 4024–4030.

    Article  CAS  Google Scholar 

  33. Barrau S., Demont, P., Peigney, A., Laurent, C., and Lacabanne, C., DC and AC conductivity of carbon nanotubes–polyepoxy composites, Macromol., Am. Chem. Soc., 2003, vol. 36, pp. 5187–5194.

    CAS  Google Scholar 

  34. Cheng, P., Fluctuation-induced tunneling conduction in disordered materials, Phys. Rev. B: Condens. Matter Mater. Phys., 1980, vol. 21, no. 6, doi 10.1103/Phys-RevB.21.2180

    Google Scholar 

  35. Oskouyi, A., Sundararaj, U., and Mertiny, P., Tunneling conductivity and piezoresistivity of composites containing randomly dispersed conductive nano-platelets, Materials, 2014, pp. 2501–2521.

    Google Scholar 

  36. Ning, H., Yoshifumi, K., Cheng, Y., Zen, M., and Hisao, F., Tunneling effect in a polymer/carbon nanotube nanocomposite strain sensor, Acta Mater., 2008, vol. 56, no. 13, pp. 2929–2936.

    Article  CAS  Google Scholar 

  37. Kymakis, E. and Amaratunga, G., Electrical properties of single-wall carbon nanotube–polymer composite films, J. Appl. Phys., 2006, vol. 99, paper 084302.

  38. Logakis, E., Pandis, C., Peoglos, V., Pissis, P., Pionteck, J., and Potschke, P., Electrical/dielectric properties and conduction mechanism in melt processed polyamide/multi-walled carbon nanotubes composites, Polymer, 2014, vol. 50, no. 21, pp. 5103–5111.

    Article  CAS  Google Scholar 

  39. Kim, H., Choi, M., Joo, J., Cho, S., and Yoon, H., Complexity in charge transport for multiwalled carbon nanotube and poly(methyl methacrylate) composites, Phys. Rev. B: Condens. Matter Mater. Phys., 2006, vol. 74, paper 054202.

  40. Mott, N., Electrons in disordered structures, Adv. Phys., 1967, vol. 16, no. 61, pp. 49–144.

    Article  CAS  Google Scholar 

  41. Spain, I.L., Electronic transport properties of graphite, carbon and related materials, Chemistry and Physics of Carbon, Walker, P.L., Ed., 1981, vol. 16, pp. 119–304.

    CAS  Google Scholar 

  42. Shao, Q., Liu, G., Teweldebrhan, D., and Balandin, A.A., High-temperature quenching of electrical resistance in grapheme interconnects, Appl. Phys. Lett., 2008, vol. 92, paper 202108.

  43. Martinelli, J.R. and Sene, F.F., Electrical resistivity of ceramic–metal composite materials: application in crucibles for induction furnaces, Ceram. Int., 2000, vol. 26, pp. 325–335.

    Article  CAS  Google Scholar 

  44. Nakata, M. and Suganuma, K., Effect of internal structure on thermal properties of alumina/aluminum composites fabricated by gelate-freezing and partial-sintering process, respectively, Mater. Trans., 2005, vol. 46, no. 1, pp. 130–135.

    Article  CAS  Google Scholar 

  45. Tsang, D.K.L., Marsden, B.J., Fok, S.L., and Hall, G., Graphite thermal expansion relationship for different temperature ranges, Carbon, 2005, vol. 43, pp. 2902–2906.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. M. Samoilov.

Additional information

Original Russian Text © V.M. Samoilov, E.A. Danilov, A.V. Nikolaeva, D.V. Ponomareva, I.A. Porodzinskii, E.R. Razyapov, I.A. Sharonov, N.A. Yashtulov, 2018, published in Neorganicheskie Materialy, 2018, Vol. 54, No. 6, pp. 633–641.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Samoilov, V.M., Danilov, E.A., Nikolaeva, A.V. et al. Electrical Conductivity of a Carbon Reinforced Alumina Resistive Composite Material Based on Synthetic Graphite and Graphene. Inorg Mater 54, 601–609 (2018). https://doi.org/10.1134/S0020168518060110

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168518060110

Keywords

Navigation