Skip to main content
Log in

Preparation, Thermal Diffusivity, and Thermal Conductivity of Phosphate Ceramics with the Tridymite Structure

  • Published:
Inorganic Materials Aims and scope

Abstract

We have synthesized powders of the CsMIIPO4 (MII = Mg, Mn, Co) phosphates with the β-tridymite structure. Phosphate ceramics were produced by conventional cold pressing with inorganic sintering aids, followed by programmed annealing, and by an innovative method: high-speed spark plasma sintering. The thermal diffusivity and thermal conductivity (0.3–0.4 W/(m K)) of the CsMIIPO4 ceramics indicate that they are heat insulators with a high working temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pet’kov, V.I. and Asabina, E.A., Thermophysical properties of NZP ceramics, Glass Ceram., 2004, vol. 61, no. 7–8, pp. 233–239.

    Article  Google Scholar 

  2. Zaripov, A.R., Slyunchev, O.M., Shmakova, M.G., Orlova, V.A., Galuzin, D.D., Rovnyi, S.I., and Pet’kov, V.I., Synthesis and physicochemical properties of phosphates with the tridymite structure as promising materials for the fabrication of cesium radioisotope sources, Vopr. Radiats. Bezopasnosti, 2006, no. 2, pp. 18–28.

    Google Scholar 

  3. Pan, H., Li, X., Zhang, J., Guan, L., Su, H., and Teng, F., Synthesis and luminescent properties of NaZn-PO4:Eu3+ red phosphors for white LEDs, Mater. Lett., 2015, vol. 155, pp. 106–108.

    Article  CAS  Google Scholar 

  4. Myasoedov, B.F., Kalmykov, S.N., Kulyako, Yu.M., and Vinokurov, S.E., Nuclear fuel cycle and its impact on the environment, Geochem. Int., 2016, vol. 64, no. 13, pp. 1156–1167.

    Article  CAS  Google Scholar 

  5. Strutynska, N.Yu., Zatovsky, I.V., Baumer, V.N., and Slobodyanik, N.S., CsMgPO4, Acta Crystallogr., Sect. E: Struct. Rep. Online, 2009, vol. 65, paper i58.

  6. Borovikova, E.Yu., Ksenofontov, D.A., Kabalov, Yu.K., Kurazhkovskaya, V.S., Stefanovich, S.Yu., Asabina, E.A., and Korchemkin, I.V., Structure and mutual transformations of anhydrous and hydrous CsMgPO4, Crystallogr. Rep., 2012, vol. 57, no. 4, pp. 514–520.

    Article  CAS  Google Scholar 

  7. Pet’kov, V.I., Korchemkin, I.V., Asabina, E.A., Zaripov, A.R., Kurazhkovskaya, V.S., Borovikova, E.Yu., and Stefanovich, S.Yu., Synthesis and study of cesiumcontaining phosphates with a ß-tridymite structure, Russ. J. Inorg. Chem., 2012, vol. 57, no. 9, pp. 1214–1220.

    Article  CAS  Google Scholar 

  8. Asabina, E.A., Zaripov, A.R., Pet’kov, V.I., Markin, A.V., Kir’yanov, K.V., Smirnova, N.N., and Rovny, S.I., Thermodynamic properties of caesium–magnesium monophosphate, J. Chem. Thermodyn., 2008, vol. 40, no. 4, pp. 653–660.

    Article  CAS  Google Scholar 

  9. Korchemkin, I.V., Pet’kov, V.I., Markin, A.V., Smirnova, N.N., Kovalskii, A.M., Efimov, N.N., and Novotortsev, V.M., Thermodynamic properties of caesium–manganese phosphate CsMnPO4, J. Chem. Thermodyn., 2014, vol. 78, pp. 114–119.

    Article  CAS  Google Scholar 

  10. Korchemkin, I.V., Pet’kov, V.I., Markin, A.V., Smirnova, N.N., and Kovalskii, A.M., Thermodynamic properties of caesium–cobalt phosphate CsCoPO4, J. Chem. Thermodyn., 2016, vol. 96, pp. 34–40.

    Article  CAS  Google Scholar 

  11. Sukhanov, M.V., Pet’kov, V.I., and Firsov, D.V., Sintering mechanism for high-density NZP ceramics, Inorg. Mater., 2011, vol. 47, no. 6, pp. 674–678.

    Article  CAS  Google Scholar 

  12. Brown, J., Hirchfield, D., Liu, D.-M., Yang, Y., Li, T., Swanson, R.E., Van Aken, S., and Kim, J.-M., US Patent 5 102 836, 1992.

  13. Chen, C.-J., Lin, L.-J., and Liu, D.-M., Synthesis and characterization of (Sr1 - x'K2x)Zr4(PO4)6 ceramics, J. Mater. Sci., 1994, vol. 29, no. 14, pp. 3733–3737.

    Article  CAS  Google Scholar 

  14. Pet’kov, V.I., Loshkarev, V.N., and Asabina, E.A., Thermal conductivity of zirconium alkali metal (Na, Cs) phosphates of the NaZr2(PO4)3 family, Rus. J. Appl. Chem., 2004, vol. 77, no. 2, pp. 178–181.

    Article  Google Scholar 

  15. Munir, Z.A., Anselmi-Tamburini, U., and Ohyanagi, M., The effect of electric field and pressure on the synthesis and consolidation of materials: a review of the spark plasma sintering method, J. Mater. Sci., 2006, vol. 41, no. 3, p. 763–777.

    Article  CAS  Google Scholar 

  16. Sheludyak, Yu.E., Kashporov, L.Ya., Malinin, L.A., and Tsalkov, V.N., Teplofizicheskie svoistva komponentov goryuchikh sistem (Thermophysical Properties of Components of Combustible Systems), Moscow: Nauka, 1992.

    Google Scholar 

  17. Shevchenko, V.Ya. and Barinov, S.M., Tekhnicheskaya keramika (Engineering Ceramics), Moscow: Nauka, 1993.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. I. Pet’kov.

Additional information

Original Russian Text © V.I. Pet’kov, I.V. Korchemkin, E.A. Asabina, A.M. Kovalskii, A.A. Usenko, 2018, published in Neorganicheskie Materialy, 2018, Vol. 54, No. 6, pp. 642–647.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pet’kov, V.I., Korchemkin, I.V., Asabina, E.A. et al. Preparation, Thermal Diffusivity, and Thermal Conductivity of Phosphate Ceramics with the Tridymite Structure. Inorg Mater 54, 610–615 (2018). https://doi.org/10.1134/S0020168518060109

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168518060109

Keywords

Navigation