Skip to main content
Log in

Oxidation Behavior of Zirconium Diboride Nanoparticles

  • Published:
Inorganic Materials Aims and scope

Abstract

The products of oxidation of ZrB2 powders with average particle sizes of ~100 and ~30 nm by atmospheric oxygen under isothermal conditions and during heating have been characterized by thermal analysis, X-ray diffraction, scanning electron microscopy, IR frustrated total internal reflection spectroscopy, energy dispersive X-ray analysis, and elemental analysis. The oxidation onset has been observed at 594 and 396°C, respectively. Oxidation at temperatures of ≥800°C leads to the formation of boron oxide and monoclinic ZrO2, independent of the particle size of ZrB2. The reaction rate constants for the oxidation of ZrB2 nanoparticles ~100 and ~30 nm in size have been determined to be 0.03, 0.15, and 0.31 h–1 at 600, 650, and 700°C and 0.11, 0.35, and 0.81 h–1 at 500, 600, and 700°C, respectively. The apparent activation energies for the oxidation of the ZrB2 nanoparticles ~100 and ~30 nm in size are 161 ± 4 and 62 ± 3 kJ/mol, respectively, as evaluated from the temperature dependence of the rate constants at the above temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Serebryakova, T.I., Neronov, V.A., and Peshev, P.D., Vysokotemperaturnye boridy (High-Temperature Borides), Chelyabinsk: Metallurgiya, 1991.

    Google Scholar 

  2. Andrievskii, R.A., The role of nanoscale effects in the interaction between nanostructured materials and environments, Prot. Met. Phys. Chem. Surf., 2013, vol. 49, no. 5, pp. 528–540.

    Article  CAS  Google Scholar 

  3. Andrievski, R.A. and Khatchoyan, A.V., Nanomaterials in Extreme Environments, Fundamentals and Applications, Cham: Springer International, 2016.

    Book  Google Scholar 

  4. Andrievskii, R.A., Nanostructured titanium, zirconium, and hafnium diborides: synthesis, properties, size effects, and stability, Usp. Khim., 2015, vol. 84, no. 5, pp. 540–554.

    Article  CAS  Google Scholar 

  5. Irwing, R.J. and Worsley, J.G., Oxidation of titanium diboride and zirconium diboride at high temperatures, J. Less.-Common. Met., 1968, vol. 16, no. 2, pp. 103–112.

    Article  Google Scholar 

  6. Lavrenko, V.A., Glebov, L.A., and Lugovskaya, E.S., High-temperature oxidation of zirconium diboride in air, Zh. Fiz. Khim., 1973, vol. 47, no. 4, pp. 887–891.

    CAS  Google Scholar 

  7. Voitovich, R.F. and Pugach, E.A., High-temperature oxidation of Group IV metal borides, Poroshk. Metall. (Kiev), 1974, no. 2, pp. 57–62.

    Google Scholar 

  8. Lebugle A. and Montel G., Étude comparée de l’oxidation des diborures de Zr, Hf et Ti, Rev. Int. High Temp. Refract., 1974, vol. 11, pp. 231–244.

    CAS  Google Scholar 

  9. Ban’kovskaya, I.B., Pevzner, B.Z., and Gorbatova, G.N., Specific features of oxidation of powder boron-containing formulations, Russ. J. Appl. Chem., 1999, vol. 72, no. 6, pp. 937–941.

    Google Scholar 

  10. Ming Guo, Guo-Jun Zhang, Yan-Mei Kan, and Pei-Ling Wang, Oxidation of ZrB2 powder in the temperature range of 650–800°C, J. Alloys Compd., 2009, vol. 471, pp. 502–506.

    Article  CAS  Google Scholar 

  11. Ortiz, A.L., Zamora, V., Rodríguez-Rojas, F., A study of the oxidation of ZrB2 powders during high-energy ball-milling in air, Ceram. Int., 2012, vol. 38, pp. 2857–2863.

    Article  CAS  Google Scholar 

  12. Kolovertnov D.V., Ban’kovskaya I.B., Yuritsyn N.S. Thermogravimetric investigation of the oxidation of the ZrB2–SiO2 composite in the temperature range 800–1300°C, Glass Phys. Chem., 2008, vol. 34, no. 4, pp. 461–469.

    Article  CAS  Google Scholar 

  13. Andrievskii, R.A., Shul’ga, Yu.M., Volkova, L.S., Korobov, I.I., Dremova, N.N., Kabachkov, E.N., Kalinnikov, G.V., and Shilkin, S.P., Oxidation behavior of TiB2 micro-and nanoparticles, Inorg. Mater., 2016, vol. 52, no. 7, pp. 686–693.

    Article  CAS  Google Scholar 

  14. Poilov, V.Z. and Pryamilova, E.N., Thermodynamics of oxidation of zirconium and hafnium borides, Russ. J. Inorg. Chem., 2016, vol. 61, no. 1, pp. 55–58.

    Article  CAS  Google Scholar 

  15. Fokin, V.N., Fokina, E.E., and Shilkin, S.P., Synthesis of coarsely crystalline metal hydrides, Russ. J. Gen. Chem., 1996, vol. 66, no. 8, pp. 1210–1212.

    Google Scholar 

  16. Fokin, V.N., Fokina, E.E., Tarasov, B.P., and Shilkin, S.P., Synthesis of the tetragonal titanium dihydride in ultradispersed state, Int. J. Hydrogen Energy, 1999, vol. 24, nos. 2–3, pp. 111–114.

    Article  CAS  Google Scholar 

  17. Burlakova A.G., Kravchenko S.E., Domashnev I.A., Vinokurov A.A., Nadkhina, S.E., Volkova, L.S., and Shilkin, S.P., Special features of preparation of nanosized zirconium diboride powders of various dispersity, Russ. J. Gen. Chem., 2017, vol. 87, no. 5, pp. 906–911.

    Article  CAS  Google Scholar 

  18. Kravchenko, S.E., Burlakova, A.G., Domashnev, I.A., Nadkhina, S.E., Dremova, N.N., Vinokurov, A.A., and Shilkin, S.P., Formation of zirconium diboride nanoparticles as a result of reaction between zirconium tetrachloride and sodium borohydride, Inorg. Mater., 2017, vol. 53, no. 8, pp. 804–808.

    Article  CAS  Google Scholar 

  19. Kravchenko S.E., Burlakova A.G., Korobov I.I., Kalinnikov G.V., Domashnev, I.A., Shilkin, S.P., and Andrievskii, R.A., Synthesis of nanosized group IV borides in ionic melts of anhydrous sodium tetraborate, Russ. J. Inorg. Chem., 2016, vol. 61, no. 4. pp. 429–433.

    Article  CAS  Google Scholar 

  20. Diagrammy sostoyaniya dvoinykh metallicheskikh sistem: Spravochnik (Phase Diagrams of Binary Metallic Systems: A Handbook), Lyakishev, N.P., Ed., Moscow: Mashinostroenie, 1996.

  21. Kolovertnov, D.V., Oxidation of glass-ceramic composites based on zirconium boride and silicon-containing compounds, Extended Abstract of Cand. Sci. (Chem.) Dissertation, St. Petersburg: Grebenshchikov Inst. of Silicate Chemistry, Russ. Acad. Sci., 2012.

    Google Scholar 

  22. Chase, M.W., Jr., NIST–JANAF thermochemical tables, fourth edition, J. Phys. Chem. Ref. Data, 1998, monograph9.

    Google Scholar 

  23. Sidorov, T.A. and Sobolev, N.N., Infrared and Raman spectra of boric anhydride: III. Interpretation of the vibrational spectrum of boric anhydride and calculation of the isotopic effect, Opt. Spektrosk., 1958, vol. 4, no. 1, pp. 9–16.

    CAS  Google Scholar 

  24. Bethell, D.E. and Sheppard, N., The infrared spectrum and structure of boric acid, Trans. Faraday Soc., 1955, vol. 51, pp. 9–15.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. P. Shilkin.

Additional information

Original Russian Text © G.V. Kalinnikov, A.A. Vinokurov, S.E. Kravchenko, N.N. Dremova, S.E. Nadkhina, S.P. Shilkin, 2018, published in Neorganicheskie Materialy, 2018, Vol. 54, No. 6, pp. 579–586.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kalinnikov, G.V., Vinokurov, A.A., Kravchenko, S.E. et al. Oxidation Behavior of Zirconium Diboride Nanoparticles. Inorg Mater 54, 550–557 (2018). https://doi.org/10.1134/S0020168518060067

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168518060067

Keywords

Navigation