Skip to main content
Log in

Enthalpy of Formation of MgAl2O4 · 0.793Al2O3 Nonstoichiometric Spinel at 1900 K from High-Temperature Mass Spectrometry Data

  • Published:
Inorganic Materials Aims and scope

Abstract

The composition and partial pressures of vapor species over the pseudobinary system Al2O3–MgO have been determined by high-temperature mass spectrometry. The data obtained have been used to evaluate the standard enthalpy of formation of nonstoichiometric spinel with the composition MgAl2O4 · 0.793Al2O3 from its constituent oxides by third-law calculations. The entropy of MgAl2O4 · 0.793Al2O3 has been evaluated using a regular-solution model with allowance for cation inversion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zienert, T. and Fabrichnaya, O., Thermodynamic assessment and experiments in the system MgO–Al2O3, CALPHAD: Comput. Coupling Phase Diagrams Thermochem., 2013, vol. 40, pp. 1–9. doi 10.1016/j.calphad. 2012.10.001

    Article  CAS  Google Scholar 

  2. Sickafus, K.E., Wills, J.M., and Grimes, N.W., Structure of spinel, J. Am. Ceram. Soc., 1999, vol. 82, pp. 3279–3292.

    Article  CAS  Google Scholar 

  3. Navrotsky, A. and Kleppa, O.J., Thermodynamics of formation of simple spinels, J. Inorg. Nucl. Chem., 1968, vol. 30, pp. 479–498. doi 10.1016/0022-1902(68)80475-0

    Article  CAS  Google Scholar 

  4. Chase, J.M.W., NIST–JANAF Thermochemical Tables, 1998, 4th ed.

    Google Scholar 

  5. Jung, I.-H., Decterov, S.A., and Pelton, A.D., Critical thermodynamic evaluation and optimization of the MgO–A2O3, CaO–MgO–Al2O3, and MgO–Al2O3–SiO2, J. Phase Equilib. Diffus., 2004, vol. 25, pp. 329–345. doi 10.1361/15477030420106

    Article  CAS  Google Scholar 

  6. Trueba, M. and Trasatti, S.P., γ-Alumina as a support for catalysts: a review of fundamental aspects, Eur. J. Inorg. Chem., 2005, pp. 3393–3403. doi 10.1002/ejic.200500348

    Google Scholar 

  7. Miller, M.E. and Misture, S.T., Idealizing γ-Al2O3: in situ determination of nonstoichiometric spinel defect structure, J. Phys. Chem. C, 2010, vol. 114, pp. 13039–13046.

    Article  CAS  Google Scholar 

  8. Wolverton, C. and Hass, K., Phase stability and structure of spinel-based transition aluminas, Phys. Rev. B: Condens. Matter Mater. Phys., 2000, vol. 63, pp. 1–16. doi 10.1103/PhysRevB.63.024102

    Article  Google Scholar 

  9. Dupree, R., Lewis, M.H., and Smith, M.E., A study of the vacancy distribution in non-stoichiometric spinels by magic-angle spinning NMR, Philos. Mag. A, 1986, vol. 53, pp. L17–L20. doi 10.1080/01418618608242816

    Article  CAS  Google Scholar 

  10. Ibarra, A., Vila, R., and De Castro, M.J., On the cation vacancy distribution in MgAl2O4 spinels, Philos. Mag. Lett., 1991, vol. 64, pp. 45–48. doi 10.1080/09500839108214665

    Article  CAS  Google Scholar 

  11. Sheldon, R., Hartmann, T., Sickafus, K., Ibarra, A., Scott, B., Argyriou, D., Larson, A., and Von Dreele, R., Cation disorder and vacancy distribution in nonstoichiometric magnesium aluminate spinel, MgO · Al2O3, J. Am. Ceram. Soc., 1999, vol. 82, pp. 3293–3298. doi 10.1111/j.1151-2916.1999.tb02242.x

    Article  CAS  Google Scholar 

  12. Glushko, V.P., Termicheskie konstanty veshchestv: Spravochnik (Thermal Constants of Substances: A Handbook), Moscow: VINITI, 1979, issue IX.

  13. Fujii, K., Nagasaka, T., and Hino, M., Activities of the constituents in spinel solid solution and free energies of formation of MgO · Al2O3, ISIJ Int., 2000, vol. 40, pp. 1059–1066.

    Article  CAS  Google Scholar 

  14. Navrotsky, A., Wechsler, B.A., Geisinger, K., and Seifert, F., Thermochemistry of MgAl2O4–Al8/3O4 defect spinels, J. Am. Ceram. Soc., 1986, vol. 69, pp. 418–422.

    Article  CAS  Google Scholar 

  15. Sasamoto, T., Hara, H., and Sata, T., Mass-spectrometric study of the vaporization of magnesium oxide from magnesium aluminate spinel, Bull. Chem. Soc. Jpn., 1981, vol. 54, pp. 3327–3333.

    Article  CAS  Google Scholar 

  16. Gribchenkova, N.A., Smorchkov, K.G., Kolmakov, A.G., and Alikhanyan, A.S., Vaporization in the Al2O3–MgO system, Inorg. Mater., 2017, vol. 53, no. 5, pp. 514–518. doi 10.1134/S0020168517050077

    Article  CAS  Google Scholar 

  17. Searcy, A., Condensed state reactions and phase equilibria, Int. Symp. High Temperature Technologies, New York: McGraw-Hill, 1959, pp. 255–277.

    Google Scholar 

  18. Redfern, S.A.T., Harrison, R.J., O’Neill, H.S.C., and Wood, D.R.R., Thermodynamics and kinetics of cation ordering in MgAl2O4 spinel up to 1600°C from in situ neutron diffraction, Am. Mineral., 1999, vol. 84, pp. 299–310.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. A. Gribchenkova.

Additional information

Original Russian Text © N.A. Gribchenkova, K.G. Smorchkov, A.G. Kolmakov, A.S. Alikhanyan, 2018, published in Neorganicheskie Materialy, 2018, Vol. 54, No. 6, pp. 605–610.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gribchenkova, N.A., Smorchkov, K.G., Kolmakov, A.G. et al. Enthalpy of Formation of MgAl2O4 · 0.793Al2O3 Nonstoichiometric Spinel at 1900 K from High-Temperature Mass Spectrometry Data. Inorg Mater 54, 575–580 (2018). https://doi.org/10.1134/S0020168518060043

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168518060043

Keywords

Navigation