Skip to main content
Log in

Phase Formation in Al2O3–ZrO2–CeO2 Nanopowders Modified with Calcium Cations

  • Published:
Inorganic Materials Aims and scope

Abstract

We have studied phase formation in calcium-modified Al2O3–ZrO2–CeO2 nanopowders during sol–gel synthesis. The results demonstrate that heat treatment of the nanopowders first leads to the formation of a zirconium dioxide-based solid solution stabilized with cerium cations. Raising the heat treatment temperature helps the crystallization of corundum, a stable phase of aluminum oxide, to reach completion. In the temperature range 1400–1550°C, we observe the formation of a second aluminum-containing phase: calcium cerium hexaaluminate consisting of long prismatic grains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Garshin, A.P., Gropyanov, V.M., Zaitsev, G.P., and Semenov, S.S., Keramika dlya mashinostroeniya (Ceramics for Machine Building), Moscow: Nauchtekhlitizdat, 2003.

    Google Scholar 

  2. Shevchenko, V.Ya. and Barinov, S.M., Tekhnicheskaya keramika (Engineering Ceramics), Moscow: Nauka, 1993.

    Google Scholar 

  3. Maccauro, G., Rossi, P., Raffaelli, L., and Manicone, P.F., Alumina and zirconia ceramic for orthopaedic and dental devices, Biomaterials Applications for Nanomedicine, Pignatello, R., Ed., Rijeka: InTech, 2011, pp. 299–308.

    Google Scholar 

  4. Chevalier, J., Taddei, P., Gremillard, L., Deville, S., Fantozzi, G., et al., Reliability assessment in advanced nanocomposite materials for orthopaedic applications, J. Mech. Behav. Biomed. Mater., 2011, vol. 4, no. 3, pp. 303–314.

    Article  Google Scholar 

  5. Savchenko, N.L., Korolev, P.V., Mel’nikov, A.G., Sablina, T.Yu., and Kul’kov, S.N., Structure and mechanical properties of sintered ZrO2–Y2O3–Al2O3 composites, Fundam. Probl. Sovrem. Materialoved., 2008, vol. 5, no. 1, pp. 4–9.

    Google Scholar 

  6. Piconi, C., Maccauro, G., and Muratori, F., Alumina matrix composites in arthroplasty, Key Eng. Mater., 2005, vols. 284–286, pp. 979–982.

    Article  Google Scholar 

  7. www.ceramtech.org.

  8. Podzorova, L.I., Il’icheva, A.A., Pen’kova, O.I., et al., Modified Al2O3–(Ce-TZP) composites as materials for medical applications, Perspekt. Mater., 2016, no. 1, pp. 32–38.

    Google Scholar 

  9. Bakunov, V.S., Belyakov, A.V., Lukin, E.S., and Shayakhmetov, U.Sh., Oksidnaya keramika: spekanie i polzuchest' (Oxide Ceramics: Sintering and Creep), Moscow: Ross. Khim.-Tekhnol. Univ. im. D.I. Mendeleeva, 2007.

    Google Scholar 

  10. Bakunov, V.S. and Lukin, E.S., Key features of the technology of high-density engineering ceramics, Steklo Keram., 2008, no. 11, pp. 21–25.

    Google Scholar 

  11. Huang, S., Li, L., Vleugels, J., Biest, O.V.D., and Wang, P., Thermodynamic assessment and microstructure of the ZrO2–Al2O3–CeO2 system, J. Mater. Sci. Technol., 2004, vol. 20, no. 1, pp. 75–78.

    CAS  Google Scholar 

  12. Korolev, V.P., Knyazev, A.V., Gavrilov, I.P., et al., X-ray diffraction and calorimetric studies of powder nanocrystalline systems based on ZrO2(Y) and Al2O3 with second insoluble component, Phys. Solid State, 2012, vol. 54, no. 2, pp. 267–272.

    Article  CAS  Google Scholar 

  13. Vol’khin, V.V., Zharnyl’skaya, A.L., and Leont’eva, G.V., Physicochemical study of composite gel in the Al2O3–ZrO2 system, Russ. J. Inorg. Chem., 2010, vol. 55, no. 5, pp. 670–675.

    Article  Google Scholar 

  14. Yoshimura, M., Sung-Tag Oh, Sando, M., and Niihara, K., Crystallization and microstructural characterization of ZrO2(3 mol % Y2O3) nano-sized powder with Al2O3 contents, J. Alloys Compd., 1999, vol. 290, pp. 284–289.

    Article  CAS  Google Scholar 

  15. Lee, S.J., Chun, S.Y., and Lee, C.H., In situ fabrication of multicomponent ceramic composites by steric organic entrapment route, J. Mater. Lett., 2004, vol. 58, pp. 2646–2649.

    Article  CAS  Google Scholar 

  16. Podzorova, L.I., Il’icheva, A.A., Shvorneva, L.I., et al., Phase transformations in t-ZrO2–Al2O3 nanoprecursors and formation of the microstructure of related ceramic materials, Glass. Phys. Chem., 2007, vol. 33, no. 5, pp. 510–514.

    Article  CAS  Google Scholar 

  17. Evolution of phase transformations during heat treatment of precursors, nanopowders, and composites in the Al2O3–ZrO2–CeO2–MgO system, Materialy VII mezhdunarodnoi nauchnoi konferentsii “Kinetika i mekhanizm kristallizatsii. Samoorganizatsiya pri fazoobrazovanii” (Proc. VII Int. Sci. Conf. Kinetics and Mechanism of Crystallization and Self-Organization during Phase Formation), Ivanovo, 2012, pp. 185–186.

  18. Biotteau-Deheuvels, K., Zych, L., Gremillard, L., and Chevalier, J., Effects of Ca–Mg- and Si-doping on microstructures of alumina–zirconia composites, J. Eur. Ceram. Soc., 2012, vol. 32, no. 11, pp. 2711–2721.

    Article  CAS  Google Scholar 

  19. Rejab, N.A., Azhar, A.Z.A., Kian, K.S., et al., Effects of MgO addition on the phase, mechanical properties, and microstructure of zirconia-toughened alumina added with CeO2 (ZTA–CeO2) ceramic composite, Mater. Sci. Eng., A, 2014, vol. 595, pp. 18–24. www.researchgate.net.

    Article  CAS  Google Scholar 

  20. Podzorova, L.I., Shvorneva, L.I., Il’icheva, A.A., et al., Microstructure and phase composition of ZrO2–CeO2–Al2O3 materials modified with MgO and Y2O3, Inorg. Mater., 2013, vol. 49, no. 4, pp. 376–381.

    Article  CAS  Google Scholar 

  21. Il’icheva, A.A., Kutsev, S.V., Podzorova, L.I., et al., Effect of precursor preparation conditions on the morphological features of nanopowders in the Al2O3–ZrO2–CeO2 system, Steklo Keram., 2009, no. 10, pp. 26–29.

    Google Scholar 

  22. Praktikum po tekhnologii keramiki i ogneuporov (Practical Course in the Technology of Ceramics and Refractories), Poluboyarinov, D.N. and Popil’skii, R.Ya., Eds., Moscow: Izd. Literatury po Stroitel’stvu, 1972, pp. 106–109.

  23. Ozerov, K.I., Effect of the chemical composition of the ambient medium on the shape of corundum crystals, Dokl. Akad. Nauk SSSR, 1945, vol. 46, no. 1, pp. 51–55.

    Google Scholar 

  24. Arsen’ev, P.A., Kovba, L.M., Bagdasarov, Kh.S., et al., Khimiya redkikh elementov. Soedineniya redkozemel’nykh elementov (sistemy s oksidami elementov I–III grupp), (Chemistry of Rare Elements. Rare-Earth Compounds (Systems of Group I–III Elements)), Moscow: Nauka, 1983.

    Google Scholar 

  25. An, L., Chan, H.M., and Soni, K.K., Control of calcium hexaluminate grain morphology in in-situ toughened ceramic composites, J. Mater. Sci., 1996, vol. 31, no. 12, pp. 3223–3229.

    Article  CAS  Google Scholar 

  26. Avanesov, A.G., Achmiz, K.B., Bykovskii, P.I., et al., (CeTb)MgAl11O19 hexaaluminate crystals, Izv. Akad. Nauk SSSR, Neorg. Mater., 1981, vol. 17, no. 5, pp. 833–837.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. I. Podzorova.

Additional information

Original Russian Text © L.I. Podzorova, A.A. Il’icheva, O.I. Pen’kova, V.P. Sirotinkin, O.S. Antonova, A.A. Konovalov, 2018, published in Neorganicheskie Materialy, 2018, Vol. 54, No. 5, pp. 475–481.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Podzorova, L.I., Il’icheva, A.A., Pen’kova, O.I. et al. Phase Formation in Al2O3–ZrO2–CeO2 Nanopowders Modified with Calcium Cations. Inorg Mater 54, 454–459 (2018). https://doi.org/10.1134/S0020168518050102

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168518050102

Keywords

Navigation