Development of a Model for the Formation of Materials with a Hierarchical Pore Structure Produced under Sol–Gel Processing Conditions


We have developed a model for the formation of silica-containing synthetic functional materials with a hierarchical pore structure and a large specific surface area under self-assembly conditions of sol–gel processes. The model includes the formation of a three-dimensional core (of a cristobalite type) of sol particles consisting of joined polymorphoids in the form of n-membered rings and a continuous transition between fractal aggregate growth mechanisms, from diffusion-limited to cluster–cluster aggregation, followed by evolution culminating in spinodal decomposition. Hierarchical structures have been studied using three-dimensional simulation with Autodesk 3ds Max software.

This is a preview of subscription content, log in to check access.


  1. 1.

    Sun, M.-H., Huang, Sh.-Zh., Chen, L.-H., Li, Yu., Yang, X.-Yu., Yuan, Zh.-Yo., and Su, B.-L., Applications of hierarchically structured porous materials from energy storage and conversion, catalysis, photocatalysis, adsorption, separation, and sensing to biomedicine, Chem. Soc. Rev., 2016, vol. 45, pp. 3479–3563.

    CAS  Article  Google Scholar 

  2. 2.

    Zhu, Yu.-P., Ren, T.-Zh., Ma, T.-Yi., and Yuan, Zh.-Yo., Hierarchical structures from inorganic nanocrystal self-assembly for photoenergy utilization, Int. J. Photoenergy, 2014, vol. 2014, article ID 498 540.

  3. 3.

    Weiping, C., Guotao, D., and Yue, L., Hierarchical Micro/Nanostructured Materials: Fabrication, Properties, and Applications, Boca Raton: CRC, 2014.

    Google Scholar 

  4. 4.

    Fu, H., Ren, F., Su, W., Yang, J., and Liu, R., A general synthesis strategy for hierarchical porous metal oxide hollow spheres, J. Nanomater., 2015, vol. 2015, article ID 473 853.

  5. 5.

    Yang, X.Y., Chen, L.H., Li Yu., Rooke, Jo C., Sanchez, C., and Su, B.-L., Hierarchically porous materials: synthesis strategies and structure design, Chem. Soc. Rev., 2017, no. 46 (2), pp. 481–558.

    CAS  Article  Google Scholar 

  6. 6.

    Lei, Ch., Pi, M., Jiang, Ch., Cheng, B., and Yu Ji, Synthesis of hierarchical porous zinc oxide (ZnO) microspheres with highly efficient adsorption of Congo red, J. Colloid Interface Sci., 2017, vol. 490, pp. 242–251.

    CAS  Article  Google Scholar 

  7. 7.

    Wang, Y., Wang, X., Yi, G., Xu Ya, Zhou, L., and Wei Yi, Synthesis of layered hierarchical porous SnO2 for enhancing gas sensing, J. Porous Mater., 2016, pp. 1–8.

    Google Scholar 

  8. 8.

    Zhang, B., Fu, W., Li, H., Fu, X., Wang, Yi., Bala, H., Wang, X., Sun, G., Cao, Ji., and Zhang, Zh., Synthesis and characterization of hierarchical porous SnO2 for enhancing ethanol sensing properties, Appl. Surf. Sci., 2016, vol. 363, pp. 560–565.

    CAS  Article  Google Scholar 

  9. 9.

    Chen, Z., Lin, Z., Yu, H., Li, N., and Xu, M., Hydrothermal synthesis of hierarchically porous Rh-doped ZnO and its high gas sensing performance to acetone, J. Mater. Sci.: Mater. Electron., 2016, vol. 27, no. 3, pp. 2633–2639.

    Google Scholar 

  10. 10.

    Gracheva, I.E., Moshnikov, V.A., Maraeva, E.V., Karpova, S.S., Alexsandrova, O.A., Alekseyev, N.I., Kuznetsov, V.V., and Olchowik, G., Nanostructured materials obtained under conditions of hierarchical self-assembly and modified by derivative forms of fullerenes, J. Non-Cryst. Solids, 2012, vol. 358, no. 2, pp. 433–439.

    CAS  Article  Google Scholar 

  11. 11.

    Moshnikov, V.A., Gracheva, I.E., Kuznezov, V.V., Maximov, A.I., Karpova, S.S., and Ponomareva, A.A., Hierarchical nanostructured semiconductor porous materials for gas sensors, J. Non-Cryst. Solids, 2010, vol. 356, nos. 37–40, pp. 2020–2025.

    CAS  Article  Google Scholar 

  12. 12.

    Abrashova, E.V., Gracheva, I.E., and Moshnikov, V.A., Functional nanomaterials based on metal oxides with hierarchical structure, J. Phys.: Conf. Ser., 2013, vol. 461, no. 1, paper 012 019.

    Google Scholar 

  13. 13.

    Syrkov, A.G., On the priority of Saint-Petersburg Mining University in the field of nanotechnology science and nanomaterials, Zapiski Gornogo instituta, 2016, vol. 221, pp. 730–736. doi 10.18454/PMI.2016.5.730.

    Google Scholar 

  14. 14.

    Lazarev, A.N., Kolebatel’nye spektry i stroenie silikatov (Vibrational Spectra and Structure of Silicates), Leningrad: Nauka, 1968.

    Google Scholar 

  15. 15.

    Pauling, L., The Nature of the Chemical Bond, Ithaca: Cornell Univ., 1960, 3rd ed.

    Google Scholar 

  16. 16.

    Belov, N.V., Kristallokhimiya silikatov s krupnymi kationami (Crystal chemistry of Large Cation Silicates), Moscow: Akad. Nauk SSSR, 1961.

    Google Scholar 

  17. 17.

    Chukin, G.D., Khimiya poverkhnosti i stroenie dispersnogo kremnezema (Crystal Chemistry and Structure of Fine-Particle Silica), Moscow: Tipografiya Paladin, OOO Printa, 2008.

    Google Scholar 

  18. 18.

    Gritsenko, V.A., Atomic structure of amorphous nonstoichiometric silicon oxides and nitrides, Usp. Fiz. Nauk, 2008, vol. 178, no. 727, pp. 727–737.

    Article  Google Scholar 

  19. 19.

    Nekrashevich, S.S. and Gritsenko, V.A., Electronic structure of silicon oxide (a review), Phys. Solid State, 2014, vol. 56, no. 2, pp. 207–222.

    CAS  Article  Google Scholar 

  20. 20.

    Minaev, V.S., Polymorphous-crystalloid structure and relaxation processes in some chalcogenide glass-forming substances, J. Optoelectron. Adv. Mater., 2001, vol. 3, no. 2, pp. 233–248.

    CAS  Google Scholar 

  21. 21.

    Minaev, V.S., Definition of the concept of glass state, Fiz. Khim. Stekla, 1994, vol. 20, no. 5, pp. 661–663.

    Google Scholar 

  22. 22.

    Minaev, V.S., Timoshenkov, S.P., and Chernykh, S.P., Polymorphous-crystalloid nature of vitreous and liquid H2O, J. Optoelectron. Adv. Mater., 2004, vol. 6, no. 1, pp. 103–112.

    CAS  Google Scholar 

  23. 23.

    Golubko, N.V., Kaleva, G.M., Roginskaya, Yu.E., and Politova, E.D., Sol–gel synthesis of lanthanum-gallate- based ceramic coatings, Inorg. Mater., 2007, vol. 43, no. 11, pp. 1235–1240.

    CAS  Article  Google Scholar 

  24. 24.

    Kononova, I.E., Gareev, K.G., Moshnikov, V.A., Almyashev, V.I., and Kucherova, O.V., Self-assembly of fractal magnetite–silica aggregates in a static magnetic field, Inorg. Mater., 2014, vol. 50, no. 1, pp. 68–74.

    CAS  Article  Google Scholar 

  25. 25.

    Moshnikov, V.A., Gracheva, I.E., and An’chkov, M.G., Investigation of sol–gel derived nanomaterials with a hierarchical structure, Glass Phys. Chem., 2011, vol. 37, no. 5, pp. 485–495.

    CAS  Article  Google Scholar 

  26. 26.

    Kononova, I.E., Moshnikov, V.A., Krishtab, M.B., and Pronin, I.A., Fractally aggregated micro- and nanosystems synthesized from sols, Glass Phys. Chem., 2014, vol. 40, no. 2, pp. 190–202.

    CAS  Article  Google Scholar 

  27. 27.

    Brinker, C.J., Hydrolysis and condensation of silicates: effects on structure, J. Non-Cryst. Solids, 1988, no. 100, pp. 31–50.

    CAS  Article  Google Scholar 

  28. 28.

    Gracheva, I.E., Lutskaya, O.F., Maksimov, A.I., Mashchenko, T.S., Moshnikov, V.A., Troshina, E.P., Chepik, L.F., and Yushkov, I.A., Synthesis and characterization of gas-sensitive layers based on nanocomposites of the SnO2–SiO2–In2O3 system, Izv. Sankt-Peterburgsk. Gos. Elektrotekh. Univ. LETI, 2005, no. 15, pp. 18–23.

    Google Scholar 

  29. 29.

    Dubinin, M.M., Adsorbtsiya i poristost' (Adsorption and Porosity), Moscow: VKhAZ, 1972.

    Google Scholar 

  30. 30.

    Karnaukhov, A.P., Adsorbtsiya. Tekstura dispersnykh i poristykh materialov (Adsorption. Texture of Dispersed and Porous Materials), Novosibirsk: Nauka, 1999.

    Google Scholar 

  31. 31.

    Moshnikov, V.A., Tairov, Yu.M., Khamova, T.V., and Shilova, O.A., Zol’-gel’ tekhnologiya mikro i nanokompozitov (Sol–Gel Technology of Micro- and Nanocomposites), Shilova, O.A., Ed., St. Petersburg: Lan’, 2013.

Download references

Author information



Corresponding author

Correspondence to I. E. Kononova.

Additional information

Original Russian Text © I.E. Kononova, P.V. Kononov, V.A. Moshnikov, 2018, published in Neorganicheskie Materialy, 2018, Vol. 54, No. 5, pp. 500–512.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kononova, I.E., Kononov, P.V. & Moshnikov, V.A. Development of a Model for the Formation of Materials with a Hierarchical Pore Structure Produced under Sol–Gel Processing Conditions. Inorg Mater 54, 478–489 (2018).

Download citation


  • hierarchical porous materials
  • sol–gel processing