Inorganic Materials

, Volume 54, Issue 4, pp 349–353 | Cite as

Effect of Oxygen Impurities and Synthesis Temperature on the Phase Composition of the Products of Self-Propagating High-Temperature Synthesis of Si3N4

  • V. V. Zakorzhevskii


It has been shown that raising the oxygen impurity concentration in starting mixture components reduces the temperature of the α–β phase transition of silicon nitride. At oxygen contents above 2 wt %, the phase transition involves silicon oxynitride formation and decomposition. With decreasing oxygen impurity concentration in silicon nitride, the temperature of the α–β phase transition rises, approaching the dissociation temperature.


silicon nitride oxygen impurities α-phase phase transition dissociation temperature 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Merzhanov, A.G., Borovinskaya, I.P., and Martynenko, V.M., USSR Inventor’s Certificate no. 1533215, 1983.Google Scholar
  2. 2.
    Zakorzhevsky, V.V. and Borovinskaya, I.P., Combustion synthesis of silicon nitride using ultrafine silicon powders, Powder Metall. Met. Ceram., 2009, vol. 48, nos. 7–8, pp. 375–380.CrossRefGoogle Scholar
  3. 3.
    Suematsu, H., Mitchel, T.E., Fukunaga, O., et al., The a–β transformation in silicon nitride single crystals, J. Am. Ceram. Soc., 1997, vol. 80, no. 3, pp. 615–620.CrossRefGoogle Scholar
  4. 4.
    Wang, L., Roy, S., Sigmund, W., and Aldinger, F., In situ incorporation of sintering additives in Si3N4 powder by a combustion process, J. Eur. Ceram. Soc., 1999, vol. 19, pp. 61–65.CrossRefGoogle Scholar
  5. 5.
    Greskovich, C. and Prochazka, S., Observation on the a–β Si3N4 transformation, J. Am. Ceram. Soc., 1977, vol. 60, nos. 9–10, pp. 170–172.Google Scholar
  6. 6.
    Bowen, L.J., Weston, R.J., Carrithers, T.G., and Brook, R.J., Hot-pressing and the a–β phase transformation in silicon nitride, J. Mater. Sci., 1978, vol. 13, pp. 341–350.CrossRefGoogle Scholar
  7. 7.
    Gausckler, L.J., Hohnke, H., and Tien, T.Y., The system Si3N4-SiO2-Y2O3, J. Am. Ceram. Soc., 1980, vol. 63, pp. 35–37.CrossRefGoogle Scholar
  8. 8.
    Jian-jie Liang, Topor, L., and Navrotsky, A., Silicon nitride: enthalpy of formation of the a-and β-polymorphs and the effect of C and O impurities, J. Mater. Res., 1999, vol. 14, no. 5, pp. 1959–1968.CrossRefGoogle Scholar
  9. 9.
    Zakorzhevsky, V.V. and Borovinskaya, I.P., Some regularities of a-Si3N4 synthesis in a commercial SHS reactor, Int. J. Self-Propag. High-Temp. Synth., 2000, vol. 9, no. 2, pp. 171–191.Google Scholar
  10. 10.
    Per-Olov Käll, Quantitative phase analysis of Si3N4-based materials, Chem. Scr., 1988, vol. 28, pp. 439–446.Google Scholar
  11. 11.
    Levis, H.V., Reed, C.J., and Butler, N.D., Pressureless-sintered ceramics based on the compound Si2N3O, Mater. Sci. Eng., 1985, vol. 8, no. 1, pp. 87–94.Google Scholar
  12. 12.
    Rocabois, P., Chatillon, C., and Bernard, C., Thermodynamics of the Si–O–N system: I. High-temperature study of the vaporization behavior of silicon nitride by mass spectrometry, J. Am. Ceram. Soc., 1996, vol. 79, no. 5, pp. 1351–1360.CrossRefGoogle Scholar
  13. 13.
    Rocabois, P., Chatillon, C., and Bernard, C., Thermodynamics of the Si–O–N system: II. Stability of Si2N3O(s) by high-temperature mass spectrometry vaporization, J. Am. Ceram. Soc., 1996, vol. 79, no. 5, pp. 1361–1365.CrossRefGoogle Scholar
  14. 14.
    Kulikov, I.S., Termodinamika karbidov i nitridov (Thermodynamics of Carbides and Nitrides), Chelyabinsk: Metallurgiya Chelyabinskoe Otd., 1988.Google Scholar
  15. 15.
    Andrievski, R.A., Melting point and dissociation of silicon nitride, Int. J. Self-Propag. High-Temp. Synth., 1995, vol. 4, no. 3, pp. 237–243.Google Scholar
  16. 16.
    Andrievskii, R.A., Khromov, Yu.F., et al., Silicon nitride dissociation, Zh. Fiz. Khim., 1994, vol. 68, no. 1, pp. 5–8.Google Scholar
  17. 17.
    Andrievskii, R.A. and Lyutikov, R.A., High-temperature dissociation of silicon nitride, Russ. J. Phys. Chem. A, 1996, vol. 70, no. 3, pp. 526–528.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Institute of Structural Macrokinetics and Materials ScienceRussian Academy of SciencesChernogolovkaRussia

Personalised recommendations