Advertisement

Inorganic Materials

, Volume 54, Issue 4, pp 386–391 | Cite as

Targeted Modification of Ni Nanotubes by Electron Irradiation

  • A. L. Kozlovskii
  • M. I. Kaikanov
  • A. V. Tikhonov
  • D. V. Ponomarev
  • M. V. Zdorovets
Article
  • 13 Downloads

Abstract

Electron beam irradiation of metallic nanostructures is an effective tool for the controlled modification of the structural and conductive properties of materials. Irradiation at electron energies under 500 keV ensures controlled defect annealing in nanotubes, improving their conductive properties due to a decrease in their resistivity. At the same time, irradiation doses above 150 kGy lead to destruction of the samples due to local thermal heating of the nanotubes, which causes breakdown of their crystal lattice and amorphization of the samples.

Keywords

template synthesis ion track technology electrochemical deposition nanotubes nanostructures growth mechanisms radiation-induced defects 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Goldberger, J., He, R., Zhang, Y., Lee, S., Yan, H., Choi, H.-J., and Yang, P., Single-crystal gallium nitride nanotubes, Nature, 2003, vol. 422, pp. 599–600.CrossRefGoogle Scholar
  2. 2.
    Liu, Z., Zhang, D., Han, S., Li, C., and Lei, B., Single crystalline magnetite nanotubes, J. Am. Chem. Soc., 2005, vol. 127, pp. 6–10.CrossRefGoogle Scholar
  3. 3.
    Sanchez-Castillo, M.A., Couto, C., Kim, W.B., and Dumesic, J.A., Gold-nanotube membranes for the oxidation of CO at gas–water interfaces, Angew. Chem., Int. Ed., 2004, vol. 43, pp. 1140–1145.CrossRefGoogle Scholar
  4. 4.
    Kros, A., Nolte, R.J.M., and Sommerdijk, N.A.J.M., Conducting polymers with confined dimensions: track-etch membranes for amperometric biosensor applications, Adv. Mater., 2002, vol. 14, pp. 1779–1796.CrossRefGoogle Scholar
  5. 5.
    Shen, C., Wang, X., Zhang, W., and Kang, F., Direct prototyping of patterned nanoporous carbon: a route from materials to on-chip devices, Sci. Rep., 2013, vol. 3, pp. 2294–2306.CrossRefGoogle Scholar
  6. 6.
    Sempau, J., An algorithm for Monte Carlo simulation of coupled electron–photon transport, Nucl. Instrum. Meth. Phys. Res., Sect. B, 1997, vol. 132, pp. 377–390.CrossRefGoogle Scholar
  7. 7.
    Reichenberger, M.A., Monte Carlo simulation of random, porous (foam) structures for neutron detection, Radiat. Phys. Chem., 2017, vol. 130, pp. 186–195.Google Scholar
  8. 8.
    Amandeep, K. and Chauhan, R.P., Carbon ion beaminduced variation in orientation of crystal planes of polycrystalline Zn nanowires, Radiat. Effects Defects Solids, 2014, vol. 169, no. 6, pp. 513–521.CrossRefGoogle Scholar
  9. 9.
    Zhao, Y., Sadat, M.E., Dunn, A., Xu, H., Chien-Hung, Chen, Nakasuga, W., and Rodney, C., Ewing photothermal effect on Fe3O4 nanoparticles irradiated by white-light for energy-efficient window applications, Solar Energy Mater. Solar Cells, 2017, vol. 161, pp. 247–254.CrossRefGoogle Scholar
  10. 10.
    Deiss, E., Holzer, F., and Hass, O., Modeling of an electrically rechargeable alkaline Zn–air battery, Electrochim. Acta, 2002, vol. 47, pp. 3995–4010.CrossRefGoogle Scholar
  11. 11.
    Wang, J.G., Tian, M.L., Kumar, N., and Mallouk, T.E., Controllable template synthesis of superconducting Zn nanowires with different microstructures by electrochemical deposition, Nano Lett., 2005, vol. 5, pp. 1247–1253.CrossRefGoogle Scholar
  12. 12.
    Wang, J.G. and Tian, M.L., TEM investigation of Zn/ZnO nanowires with different microstructure synthesized by electrodeposition, Microsc. Microanal., 2004, vol. 10, pp. 358–359.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • A. L. Kozlovskii
    • 1
    • 2
  • M. I. Kaikanov
    • 3
  • A. V. Tikhonov
    • 4
  • D. V. Ponomarev
    • 5
  • M. V. Zdorovets
    • 1
    • 2
    • 6
  1. 1.Institute of Nuclear Physics (Astana Branch)Ministry of Energy, Republic of KazakhstanAstanaKazakhstan
  2. 2.L.N. Gumilyov Eurasian National UniversityAstanaKazakhstan
  3. 3.Astana National LaboratoryNazarbaev UniversityAstanaKazakhstan
  4. 4.School of Sciences and TechnologiesNazarbaev UniversityAstanaKazakhstan
  5. 5.Tomsk Polytechnic UniversityTomskRussia
  6. 6.Yeltsin Federal UniversityYekaterinburgRussia

Personalised recommendations