Abstract
The Dy2Ge2O7 and Ho2Ge2O7 pyrogermanates have been prepared by solid-state reactions in several sequential firing steps in the temperature range 1237–1473 K using stoichiometric mixtures of Dy2O3 (or Ho2O3) and GeO2. The heat capacity of the synthesized germanates has been determined as a function of temperature by differential scanning calorimetry in the range 350–1000 K. The experimentally determined C p (T) curves of the dysprosium and holmium germanates have no anomalies and are well represented by the Maier–Kelley equation. The experimental C p (T) data have been used to evaluate the thermodynamic functions of the Dy2Ge2O7 and Ho2Ge2O7 pyrogermanates: enthalpy increment H°(T)–H°(350 K), entropy change S°(T)–S°(350 K), and reduced Gibbs energy Ф°(T).
This is a preview of subscription content, log in to check access.
References
- 1.
Bondar’, I.A., Vinogradova, N.V., Dem’yanets, L.N., et al., Soedineniya redkozemel’nykh elementov. Silikaty, germanaty, fosfaty, arsenaty, vanadaty (Rare-Earth Compounds: Silicates, Germanates, Phosphates, Arsenates, and Vanadates), Moscow: Nauka, 1983.
- 2.
Dem’yanets, L.N., Lobachev, A.N., and Emel’-chenko, G.A., Germanaty redkozemel’nykh elementov (Rare-Earth Germanates), Moscow: Nauka, 1980.
- 3.
Portnoi, K.I. and Timofeeva, N.I., Kislorodnye soedineniya redkozemel’nykh elementov (Rare-Earth Oxide Compounds), Moscow: Metallurgiya, 1986.
- 4.
Wang, H., Chroneos, A., Dimoulas, A., et al., Interaction of oxygen vacancies in yttrium germanates, Phys. Chem. Chem. Phys., 2012, vol. 14, pp. 14630–14634.
- 5.
Leskelä, M. and Ninistö, L., Inorganic complex compounds I, Handb. Phys. Chem. Rare Earths, 1986, vol. 8, pp. 203–334.
- 6.
Subramanian, M.A. and Sleight, A.W., Rare earth pyrochlores, Handb. Phys. Chem. Rare Earths, 1993, vol. 16, pp. 225–248.
- 7.
Becker, U.W. and Felsche, J., Phases and structural relations of the rare earth germanates RE2Ge2O7, RE = La–Lu, J. Less-Common Met., 1987, vol. 128, pp. 269–280.
- 8.
Li, X., Cai, Y.Q., Cui, Q., et al., Long-range magnetic order in Heisenberg pyrochlore antiferromagnets Gd2Ge2O7 and Gd2Pt2O7 synthesized under high pres-sure, Phys. Rev. B: Condens. Matter Mater. Phys., 2016, vol. 94, paper 214429.
- 9.
Morosan, E., Fleitman, J.A., Huang, Q., et al., Structure and magnetic properties of the Ho2Ge2O7 pyrogermanate, Phys. Rev. B: Condens. Matter Mater. Phys., 2008, vol. 77, paper 224423.
- 10.
Jana, S., Ghosh, D., and Wanklyn, B.M., Magnetic susceptibilities and anisotropy studies of holmium pyrogermanate Ho2Ge2O7 crystal, J. Magn. Magn. Mater., 1998, vol. 183, pp. 135–142.
- 11.
Ke, X., Dahlberg, M.L., Morosan, E., et al., Magnetothermodynamics of the Ising antiferromagnet Dy2Ge2O7, Phys. Rev. B: Condens. Matter Mater. Phys., 2008, vol. 78, paper 104411.
- 12.
Moran, D.M. and Richardson, F.S., Chiroptical activity of holmium pyrogermanate: tetragonal Ho2Ge2O7, J. Alloys. Compd., 1992, vol. 180, pp. 171–175.
- 13.
Jouhet-Vetter, G. and Queyroux, F., Etude de quelques composes Ln2Ge2O7 (Ln = La, Nd, Sm, Eu, Gd), Mater. Res. Bull., 1975, vol. 10, pp. 1201–1204.
- 14.
Solovyov, L.A., Full-profile refinement by derivative difference minimization, J. Appl. Crystallogr., 2004, vol. 37, pp. 743–749.
- 15.
Denisov, V.M., Denisova, L.T., Irtyugo, L.A., and Biront, V.S., Thermal physical properties of Bi4Ge3O12 single crystals, Phys. Solid State, 2010, vol. 52, no. 7, pp. 1362–1365.
- 16.
Denisova, L.T., Irtyugo, L.A., Kargin, Yu.F., et al., High-temperature heat capacity and thermodynamic properties of Tb2Sn2O7, Inorg. Mater., 2017, vol. 53, no. 1, pp. 67–69.
- 17.
Pet'kov, V.I., Markin, A.V., and Smirnova, N.N., Thermodynamic properties of LiZr2(PO4)3 crystal phosphate, Russ. J. Phys. Chem. A, 2013, vol. 87, no. 8, pp. 1266–1271.
- 18.
Skuratov, S.M., Kolesov, V.P., and Vorob’ev, A.F., Termokhimiya (Thermochemistry), Moscow: Mosk. Gos. Univ., 1966, part II.
- 19.
Prekul, A.F., Kazantsev, V.A., Shchegolikhina, N.M., et al., High-temperature heat capacity of the Al63Cu25Fe12 quasicrystal, Phys. Solid State, 2008, vol. 50, no. 11, pp. 2013–2015.
- 20.
Denisova, L.T., Izotov, A.D., Chumilina, L.G., et al., Heat capacity and thermodynamic properties of bismuth orthovanadate in the temperature range 356–980 K, Dokl. Phys. Chem., 2016, vol. 467, no. 1, pp. 41–44.
- 21.
Denisova, L.T., Irtyugo, L.A., Kargin, Yu.F., et al., High-temperature heat capacity of the oxide compounds in the Bi2O3–V2O5 system, Inorg. Mater., 2017, vol. 53, no. 3, pp. 300–306.
- 22.
Leitner, J., Chuchvalec, P., Sedmidubský, D., et al., Estimation of heat capacities of solid mixed oxides, Thermochim. Acta, 2003, vol. 395, pp. 27–46.
Author information
Affiliations
Corresponding author
Additional information
Original Russian Text © L.T. Denisova, L.A. Irtyugo, Yu.F. Kargin, N.V. Belousova, V.V. Beletskii, V.M. Denisov, 2018, published in Neorganicheskie Materialy, 2018, Vol. 54, No. 4, pp. 382–386.
Rights and permissions
About this article
Cite this article
Denisova, L.T., Irtyugo, L.A., Kargin, Y.F. et al. Synthesis and High-Temperature Heat Capacity of Dy2Ge2O7 and Ho2Ge2O7. Inorg Mater 54, 361–365 (2018). https://doi.org/10.1134/S0020168518040039
Received:
Published:
Issue Date:
Keywords
- solid-state synthesis
- dysprosium and holmium germanates
- differential scanning calorimetry
- heat capacity
- thermodynamic properties