Advertisement

Inorganic Materials

, Volume 54, Issue 4, pp 319–331 | Cite as

Magnetic Phase Diagram of CuCr2–xSb x S4 Solid Solutions

  • T. G. Aminov
  • E. V. Busheva
  • G. G. Shabunina
  • V. M. Novotortsev
Article
  • 27 Downloads

Abstract

The magnetization of CuCr2–xSb x S4 solid solutions has been measured as a function of temperature between 300 and 5 K in a weak (3980 A/m) and a strong (7960 A/m) magnetic field. We have identified the type and character of the magnetic transformations observed in the system and determined the temperature and composition limits of the stability regions of the magnetically active phases involved and the cation and valence distributions in them. A magnetic phase diagram of the synthesized materials has been mapped out, where the largest area (0 < x < 0.23) after the paramagnetic region is occupied by solid solutions based on the CuCr2S4 ferromagnet. In the composition range (0.23 < x < 0.40) adjacent to the infinite clusters—CuCr2S4 ferromagnet and CuCr1.5Sb0.5S4 antiferromagnet—the phase diagram contains medium and small finite ferro- and antiferromagnetic clusters forming a short-range magnetic order or spin glass. The compositions based on the CuCr1.5Sb0.5S4 antiferromagnet lie in the composition range 0.4 < x < 0.5.

Keywords

spinel semiconductors ferromagnet antiferromagnet 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Warczewski, J., Kusz, J., Filimonov, D.S., Kessler, Ya.A., Koroleva, L.I., Mikheev, M.G., Odintsov, A.G., Aminov, T.G., Busheva, E.V., and Shabunina, G.G., New antiferromagnetic semiconductor CuCr1.5Sb0.5S4, J. Magn. Magn. Mater., 1997, vol. 175, pp. 299–303.CrossRefGoogle Scholar
  2. 2.
    Arbuzova, T.I., Smolyak, I.B., Aminov, T.G., and Kireeva, E.V., Magnetic structure of antimony-doped spinels, Fiz. Tverd. Tela (S.-Peterburg), 1996, vol. 38, no. 4, pp. 1195–1207.Google Scholar
  3. 3.
    Arbuzova, T.I., Aminov, T.G., Busheva, E.V., and Shabunina, G.G., CuCr2–xSbxS4 and Cu1–ySbyCr2S4 solid solutions, Inorg. Mater., 2000, vol. 36, no. 2, pp. 156–160.Google Scholar
  4. 4.
    Aminov, T.G., Shabunina, G.G., and Busheva, E.V., CuCr1.5Sb0.5S4–xSex: novel antiferromagnets, Kondens. Sredy Mezhfaznye Granitsy, 2011, vol. 13, no. 4, pp. 395–400.Google Scholar
  5. 5.
    Aminov, T.G., Shabunina, G.G., and Busheva, E.V., Synthesis and magnetic properties of CuCr1.5Sb0.5S4–xSex solid solutions, Russ. J. Inorg. Chem., 2012, vol. 57, no. 11, pp. 1397–1401.CrossRefGoogle Scholar
  6. 6.
    Aminov, T.G., Shabunina, G.G., Busheva, E.V., and Novotortsev, V.M., CuCr1.5 + xSb0.5–xSe4 diluted magnetic semiconductors, Novye magnitnye materialy mikroelektroniki (Sbornik trudov XIX mezhdunarodnoi shkoly-seminara) (Novel Magnetic Microelectronic Materials: Proc. XIX Int. Workshop), Moscow, 2004, pp. 555–556.Google Scholar
  7. 7.
    Gubaidullin, R.K., Sadykov, R.A., Aminov, T.G., and Amerikova, E.V., Synthesis, magnetic structure, and hyperfine interaction behavior of 57Fe/CuCr2–xSbxS4, Neorg. Mater., 1992, vol. 28, no. 7, pp. 1377–1382.Google Scholar
  8. 8.
    Gubaidullin, R.K., Bashkirova, Sh.S., Aminov, T.G., and Amerikova, E.V., Effect of doping with antimony on the cation distribution and magnetic structure of 57Fe/CuCr2S4, Inorg. Mater., 1994, vol. 30, no. 1, pp. 31–33.Google Scholar
  9. 9.
    Gubaidullin, R.K., Sadykov, R.A., Aminov, T.G., Prokopenko, V.K., and Shemyakov, A.A., Electronic states of cations and magnetic structure in the CuCr2–xSbxS4 system, Fiz. Tverd. Tela (S.-Peterburg), 1993, vol. 35, no. 11, pp. 2922–2928.Google Scholar
  10. 10.
    Aminov, T.G., Shabunina, G.G., Busheva, E.V., and Novotortsev, V.M., Magnetic properties of solid solutions CuCr1.5 + xSb0.5–xS0.5Se3.5 (x = 0–05), Russ. J. Inorg. Chem., 2015, vol. 60, no. 12, pp. 1537–1543.CrossRefGoogle Scholar
  11. 11.
    Aminov, T.G., Shabunina, G.G., Busheva, E.V., and Novotortsev, V.M., Magnetic properties of CuCr2–x-SbxS0.5Se4 (x = 0–0.5) solid solutions, Russ. J. Inorg. Chem., 2017, vol. 62, no. 2, pp. 197–203.CrossRefGoogle Scholar
  12. 12.
    Robbins, M., Lehmann, H.W., and White, J.G., Neutron diffraction and electrical transport properties of CuCr2Se4, J. Phys. Chem. Solids, 1967, vol. 28, no. 6, pp. 897–902.CrossRefGoogle Scholar
  13. 13.
    Colominas, C., Neutron diffraction investigation of CuCr2Se4 and CuCr2Te4, Phys. Rev., 1967, vol. 153, no. 2, pp. 558–560.CrossRefGoogle Scholar
  14. 14.
    Lotgering, F.K., Ferromagnetism in spinels: CuCr2S4 and CuCr2Se4, Solid State Commun., 1964, vol. 2, no. 2, pp. 55–56.CrossRefGoogle Scholar
  15. 15.
    Lotgering, F.K. and van Stapele, R.P., Magnetic and electrical properties of copper containing sulfides and selenides with spinel structure, Solid State Commun., 1967, vol. 5, no. 2, pp. 143–146.CrossRefGoogle Scholar
  16. 16.
    Goodenough, J.B., Tetrahedral-site copper in chalcogenide spinels, Solid State Commun., 1967, vol. 5, no. 8, pp. 577–580.CrossRefGoogle Scholar
  17. 17.
    Goodenough, J.B., Description of transition-metals compounds: application to several sulfides, Colloque Int. du C.N.R.S., Orsay, 1967, no. 157, pp. 263–292.Google Scholar
  18. 18.
    Reznicky, A.Z., Sklyarov, E.V., Piskunova, L.F., and Ushchapovsky, Z.F., Florensovite Cu(Cr1.5Sb0.5)S4—a new sulfospinel from Pribaikalya, Proc. USSR Mineral. Soc., 1989, vol. 118, no. 1, pp. 57–65.Google Scholar
  19. 19.
    Kesler, Ya.A., Koroleva, L.I., Mikheev, M.G., et al., CuCr1.5Sb0.5S4—a new antiferromagnetic semiconductor, Inorg. Mater., 1993, vol. 29, no. 1, pp. 103–104.Google Scholar
  20. 20.
    Vonsovskii, S.V., Magnetizm (Magnetism), Moscow: Nauka, 1971.Google Scholar
  21. 21.
    Krupicka, S., Physik der Ferrite und der verwandten magnetischen Oxide, Prague: Academia, 1973, vol.1.Google Scholar
  22. 22.
    Petrakovskii, G.A., Spin glass, Sorosovsk. Obrazovat. Zh., 2001, vol. 7, no. 9, pp. 83–89.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • T. G. Aminov
    • 1
  • E. V. Busheva
    • 1
  • G. G. Shabunina
    • 1
  • V. M. Novotortsev
    • 1
  1. 1.Kurnakov Institute of General and Inorganic ChemistryRussian Academy of SciencesMoscowRussia

Personalised recommendations