Inorganic Materials

, Volume 54, Issue 3, pp 221–228 | Cite as

Effect of Ascorbic Acid Additions on the Mechanism Underlying the Growth of Nanostructured PbSe Films via Hydrochemical Deposition

  • V. M. Yurk
  • L. N. Maskaeva
  • V. F. Markov
  • E. V. Maraeva
  • V. A. Moshnikov
  • L. B. Matyushkin


The effect of ascorbic acid additions on the growth mechanism of thin PbSe films produced by hydrochemical deposition has been studied by atomic force microscopy (AFM). A fractal analysis of AFM images of the lead selenide films has shown that their formation follows the “cluster–particle” aggregation mechanism. The fractal dimension assessed by the box-counting method is 2.26 at an average grain size of ~150 nm. From the transmission spectra of the films grown at deposition times from 20 to 120 min, we have evaluated their optical band gap, which has been shown to decrease from 0.595 to 0.53 eV with increasing deposition time. These values are attributable to the manifestation of quantum size effects in the grown PbSe films.


lead selenide thin films hydrochemical deposition fractal dimension atomic force microscopy band gap 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bode, D.E., Lead salt detectors, Physics of Thin Films, Hass, G. and Thun, R.E., Eds., New York: Academic, 1966, vol. 3, pp. 275–301.Google Scholar
  2. 2.
    Butkevich, V.G., Bochkov, V.D., and Globus, E.R., Photodetectors and photodetecting devices based on polycrystalline and epitaxial lead chalcogenide layers, Prikl. Fiz., 2001, vol. 6, pp. 66–102.Google Scholar
  3. 3.
    Bochkov, V.D., Bychkovskii, Ya.S., Drazhnikov, B.N., Kondyushin, I.S., and Koshchavtsev, N.F., Lead chalcogenide- based photodetector arrays, Prikl. Fiz., 2013, no. 6, pp. 42–47.Google Scholar
  4. 4.
    Tropina, N.E., Multielement lead selenide-based detectors for the spectral range 2–5 μm, Nauchno-Tekh. Vestn. Sankt-Peterburgsk. Gos. Univ. Inform. Tekhnol., Mekh. Opt., 2009, no. 6 (64), pp. 47–53.Google Scholar
  5. 5.
    Mukhamedzyanov, Kh.N., Mironov, M.P., Yagodin, S.I., Maskaeva, L.N., and Markov, V.F., Preparation of highly functional nanostructured lead selenide films, Tsvet. Met., 2009, no. 12, pp. 57–60.Google Scholar
  6. 6.
    Grinchenko, L.Ya., Ponomarenko, V.P., and Filachev, A.M., Developments and prospects in infrared photoelectronics, Prikl. Fiz., 2009, no. 2, pp. 57–63.Google Scholar
  7. 7.
    Hyungwoo Lee, Changhoon Oh, and Hahn, J.W., Calibration of a mid-IR optical emission spectrometer with a 256-array PbSe detector and an absolute spectral analysis of IR signatures, Infrared Phys. Technol., 2013, vol. 57, pp. 50–55.CrossRefGoogle Scholar
  8. 8.
    Barrios-Salgado, E., Nair, M.T.S., Nair, P.K., and Zingaro, R.A., Chemically deposited thin films of PbSe as an absorber component in solar cell structures, Thin Solid Films, 2011, vol. 519, pp. 7432–7437.CrossRefGoogle Scholar
  9. 9.
    Vaidyanathan, R., Stickney, J.L., and Happek, U., Quantum confinement in PbSe thin films electrodeposited by electrochemical atomic layer epitaxy (ECALE), Electrochim. Acta, 2004, vol. 49, no. 8, pp. 1321–1326.CrossRefGoogle Scholar
  10. 10.
    Ravich, Yu.I., Efimova, B.A., and Smirnov, I.A., Metody issledovaniya poluprovodnikov v primenenii k khal’kogenidam svintsa PbTe, PbSe, PbS (Semiconductor Characterization Techniques with Application to the Lead Chalcogenides PbTe, PbSe, and PbS), Moscow: Nauka, 1968.Google Scholar
  11. 11.
    Zimin, S.P. and Gorlachev, E.S., Nanostrukturirovannye khal’kogenidy svintsa (Nanostructured Lead Chalcogenides), Yaroslavl: Yaroslavsk. Gos. Univ., 2011.Google Scholar
  12. 12.
    Etgar, L., Lifshitz, E., and Tannenbaum, R., Hierarchical conjugate structure of γ-Fe2O3 nanoparticles and PbSe quantum dots for biological applications, J. Phys. Chem. C, 2007, vol. 111, pp. 6238–6244.CrossRefGoogle Scholar
  13. 13.
    Semonin, O.E., Luther, J.M., and Beard, M.C., Quantum dots for next-generation photovoltaics, Mater. Today, 2012, vol. 15, no. 11, pp. 508–515.CrossRefGoogle Scholar
  14. 14.
    Pejova, B., Najdoski, M., Grozdanov, I., and Dey, S.K., Chemical bath deposition of {111} textured mercury(II) selenide thin layers on transparent polyester sheets, Mater. J. Chem., 1999, no. 9, pp. 2889–2892.CrossRefGoogle Scholar
  15. 15.
    Zhang, L., Zhang, Y., Kershaw, S.V., Zhao, Y., Wang, Y., Jiang, Y., Zhang, T., Yu, W.W., Gu, P., Wang, Y., Zhang, H., and Rogach, A.L., Colloidal PbSe quantum dot–solution-filled liquid-core optical fiber for 1.55 μm telecommunication wavelengths, Nanotechnology, 2014, vol. 25, no. 10, paper 105 704.Google Scholar
  16. 16.
    Tropin, A. and Tropina, N., Semiconductor light sources for the infrared spectral region, Kompon. Tekhnol., 2008, no. 88, pp. 152–153.Google Scholar
  17. 17.
    Böberl, M., Heiss, W., Schwarzl, T., Wiesauer, K., and Springholz, G., Mid-infrared continuous-wave photoluminescence of lead-salt structures up to temperatures of 190°C, Appl. Phys. Lett., 2003, vol. 82, no. 23, pp. 4065–4067.CrossRefGoogle Scholar
  18. 18.
    Sierra, C., Torquemada, M.C., Vergara, G., Rodrigo, M.T., Gutiérrez, C., Pérez, G., Génova, I., Catalán, I., Gómez, L.J., Villamayor, V., Álvarez, M., Fernández, D., Magaz, M.T., and Almazán, R.M., Multicolour PbSe sensors for analytical applications, Sens. Actuators, B, 2014, vol. 190, pp. 464–471.CrossRefGoogle Scholar
  19. 19.
    Androulakis, J., Todorov, I., He, J., Chung, D.-Y., Dravid, V., and Kanatzidis, M., Nanostructures boost the thermoelectric performance of PbS, J. Am. Chem. Soc., 2011, vol. 133, no. 10, pp. 3460–3470.CrossRefGoogle Scholar
  20. 20.
    Gibin, I.S., Kotenko, V.P., and Shurman, V.L., Solidstate image converter, Dokl. Akad. Nauk Vyssh. Shk. Ross., 2014, vol. 22, no. 1, pp. 43–51.Google Scholar
  21. 21.
    Dirochka, A.I., Korneeva, M.D., and Filachev, A.M., Photoelectronics and night vision devices, Usp. Prikl. Fiz., 2013, vol. 1, no. 3, pp. 307–315.Google Scholar
  22. 22.
    Markov, V.F., Maskaeva, L.N., and Ivanov, P.N., Gidrokhimicheskoe osazhdenie plenok sul’fidov metallov: modelirovanie i eksperiment (Hydrochemical Growth of Metal Sulfide Films: Simulation and Experiment), Yekaterinburg: Ural’sk. Otd. Ross. Akad. Nauk, 2006.Google Scholar
  23. 23.
    Bakanov, V.M., Maskaeva, L.N., and Markov, V.F., Thermosensitization of nanostructured PbSe films, Chim. Tech. Acta, 2015, no. 2, pp. 164–170.CrossRefGoogle Scholar
  24. 24.
    Maskaeva, L.N. and Markov, V.F., Nucleation behavior and growth mechanism of metal sulfide films upon precipitation with thiourea, Izv. Ross. Akad. Nauk: Ser. Khim., 2014, no. 7, pp. 1523–1532.Google Scholar
  25. 25.
    Mokrushin, S.G. and Tkachev, Yu.D., CdS formation on a solid/solution interface, Kolloidn. Zh., 1961, vol. 23, no. 4, pp. 438–441.Google Scholar
  26. 26.
    Makurin, Yu.N., Pletnev, R.N., Kleshchev, D.G., and Zhelonkin, N.A., Promezhutochnyi kompleks v khimicheskikh reaktsiyakh (Intermediate Complex in Chemical Reactions), Sverdlovsk: Ural’sk. Otd. Akad. Nauk SSSR, 1990.Google Scholar
  27. 27.
    Dutt, M., Kameshwari, D., and Subbarao, D., Size of particle obtained by solution growth technique, Colloids Surf., A, 1998, vol. 133, no. 2, pp. 89–91.CrossRefGoogle Scholar
  28. 28.
    Smith, A.M. and Nie, S., Semiconductor nanocrystals: structure, properties, and band gap engineering, Acc. Chem. Res., 2010, vol. 43, no. 2, pp. 190–200.CrossRefGoogle Scholar
  29. 29.
    Yurk, V.M., Maskaeva, L.N., Markov, V.F., and Mokrousova, O.A., Kinetics of hydrochemical deposition of PbSe films in the presence of ascorbic acid, Russ. J. Appl. Chem., 2016, vol. 89, no. 6, pp. 871–879.CrossRefGoogle Scholar
  30. 30.
    Smirnov, B.M., Fizika fraktal’nykh klasterov (The Physics of Fractal Clusters), Moscow: Nauka, 1991.Google Scholar
  31. 31.
    Yudin, V.V., Shchegoleva, S.A., and Pisarenko, T.A., Kinetics of thermal relaxation of mesodefect networks in amorphous Co–Ni–P films in a stochastic flow model, Phys. Solid State, 2001, vol. 43, no. 11, pp. 2074–2082.CrossRefGoogle Scholar
  32. 32.
    Sotskov, B.A., Experimental investigation of the effect of conducting fractal phases on the permittivity of composites, Tech. Phys, 2013, vol. 83, no. 10, pp. 1476–1480.CrossRefGoogle Scholar
  33. 33.
    Kameneva, A.L., Effect of growth conditions on the structure and properties of ZrN-based films produced by magnetron sputtering, Vestn. Magnitogorsk. Gos. Tekh. Univ. im. G. I. Nosova, 2009, no. 4, pp. 40–46.Google Scholar
  34. 34.
    Moshnikov, V.A., Nalimova, S.S., and Seleznev, B.I., Gas-sensitive layers based on fractal–percolation structures, Semiconductors, 2014, vol. 48, no. 11, pp. 1499–1503.CrossRefGoogle Scholar
  35. 35.
    Dubrovskii, V.G. and Cirlin, G.E., Growth kinetics of thin films formed by nucleation during layer formation, Semiconductors, 2005, vol. 39, no. 11, pp. 1267–1275.CrossRefGoogle Scholar
  36. 36.
    Katysheva, A.S., Markov, V.F., and Maskaeva, L.N., Mechanism of PbSeyS1–y film formation in chemical deposition from aqueous solutions, Russ. J. Inorg. Chem., 2013, vol. 58, no. 7, pp. 833–838.CrossRefGoogle Scholar
  37. 37.
    Lyubchenko, A.V., Sal’kov, E.A., and Sizov, F.F., Fizicheskie osnovy poluprovodnikovoi infrakrasnoi fotoelektroniki (Physical Principles of Infrared Semiconductor Photoelectronics), Kiev: Naukova Dumka, 1984.Google Scholar
  38. 38.
    El-Shazly, E.A.A., Zedan, I.T., and Abd El-Rahman, K.F., Determination and analysis of optical constants for thermally evaporated PbSe thin films, Vacuum, 2011, no. 86, pp. 318–323.CrossRefGoogle Scholar
  39. 39.
    Jung, H., Kuljic, R., Stroscio, M.A., and Dutta, M., Confinement in PbSe wires grown by rf magnetron sputtering, Appl. Phys. Lett., 2010, vol. 96, paper 153 106.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • V. M. Yurk
    • 1
  • L. N. Maskaeva
    • 1
    • 2
  • V. F. Markov
    • 1
    • 2
  • E. V. Maraeva
    • 3
  • V. A. Moshnikov
    • 3
  • L. B. Matyushkin
    • 3
  1. 1.Yeltsin Federal UniversityYekaterinburgRussia
  2. 2.Ural Institute of State Fire ServiceRussian Federation Ministry of Emergency ManagementYekaterinburgRussia
  3. 3.St. Petersburg State Electrotechnical UniversitySt. PetersburgRussia

Personalised recommendations