Advertisement

Inorganic Materials

, Volume 54, Issue 3, pp 295–300 | Cite as

Structure and Hardness of Ceramics Produced through High-Temperature Nitridation of Titanium Foil

  • S. V. Shevtsov
  • I. A. Kovalev
  • A. I. Ogarkov
  • S. V. Kannykin
  • D. V. Prosvirnin
  • A. S. Chernyavskii
  • K. A. Solntsev
Article
  • 11 Downloads

Abstract

We have studied the variation in the phase composition, elemental composition, and microstructure of rolled titanium samples during thermal annealing in a nitrogen atmosphere at 1300, 1500, 1700, and 2000°C. The results demonstrate that the nitridation process can yield compact titanium nitride-based ceramics or TiN/TiN x /α-Ti〈N〉 heterostructures. X-ray diffraction data for the near-surface region of the samples before and after nitridation and those for cross-sectional fracture surfaces of heterostructures are used to infer orientation relationships between the TiN phase and α-Ti〈N〉 solid solution. Scanning electron microscopy results for cross-sectional fracture surfaces indicate that complete nitridation of the samples leads to the formation of a three-layer microstructure.

Keywords

titanium nitride ceramic nitridation oxidation-assisted engineering structure hardness X-ray diffraction scanning electron microscopy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Titanium in Medicine: Material Science, Surface Science, Engineering, Biological Responses and Medical Applications, Brunette, D.M., Ed., New York: Springer, 2001.Google Scholar
  2. 2.
    Cyster, L.A., Grant, D.M., Parker, K.G., and Parker, T.L., The effect of surface chemistry and structure of titanium nitride (TiN) films on primary hippocampal cells, Biomol. Eng., 2002, vol. 19, pp. 171–175.CrossRefGoogle Scholar
  3. 3.
    Tribology of Engineered Surfaces, in Wear Materials, Mechanisms and Practice, Stachowiak, G.W., New York: Wiley, 2005.Google Scholar
  4. 4.
    Toth, L.E., Transition Metal Carbides and Nitrides, New York: Academic, 1971.Google Scholar
  5. 5.
    Kiuchi, M., Tomita, M., Fujii, K., Satou, M., and Shimizu, R., Titanium nitride crystal growth with preferred orientation by dynamic mixing method, Jpn. J. Appl. Phys., 1987, vol. 26, no. 6, pp. L938–L940.CrossRefGoogle Scholar
  6. 6.
    Ingo, G.M., Kaciulis, S., Mezzi, A., Valente, T., Casadei, F., and Gusmanoa, G., Characterization of composite titanium nitride coatings prepared by reactive plasma spraying, Electrochim. Acta, 2005, vol. 50, pp. 4531–4537.CrossRefGoogle Scholar
  7. 7.
    Danek, M., Liao, M., Tseng, J., Littau, K., Saigal, D., Zhang, H., Mosely, R., and Eizenberg, M., Resistivity reduction and chemical stabilization of organometallic chemical vapor deposited titanium nitride by nitrogen of plasma, Appl. Phys. Lett., 1996, vol. 68, no. 7, pp. 1015–1016.CrossRefGoogle Scholar
  8. 8.
    Fix, R.M., Gordon, R.G., and Hoffman, D.M., Synthesis of films by atmospheric pressure chemical vapor deposition using amido and imido titanium(IV) compounds as precursors, Chem. Mater., 1990, vol. 2, pp. 235–241.CrossRefGoogle Scholar
  9. 9.
    Bendavid, A., Martin, P.J., Wang, X., Wittling, M., and Kinder, T.J., Deposition and modification of titanium nitride by ion assisted arc deposition, J. Vac. Sci. Technol., A, 1995, vol. 13, pp. 1658–1664.CrossRefGoogle Scholar
  10. 10.
    Calka, A., Formation of titanium and zirconium nitrides by mechanical alloying, Appl. Phys. Lett., 1991, vol. 59, no. 13, pp. 1568–1569.CrossRefGoogle Scholar
  11. 11.
    Castro, D.T. and Ying, J.Y., Synthesis and sintering of nanocrystalline titanium nitride, Nanostruct. Mater., 1997, vol. 9, pp. 67–70.CrossRefGoogle Scholar
  12. 12.
    Shin, D.H., Hong, Y.C., and Uhm, H.S., Production of nanocrystalline titanium nitride powder by atmospheric microwave plasma torch in hydrogen/nitrogen gas, J. Am. Ceram. Soc., 2005, vol. 88, no. 10, pp. 2736–2739.CrossRefGoogle Scholar
  13. 13.
    Marin-Ayral, R.M., Pascal, C., Martinez, F., and Tedenac, J.C., Simultaneous synthesis and densification of titanium nitride by high pressure combustion synthesis, J. Eur. Ceram. Soc., 2000, vol. 20, pp. 2679–2684.CrossRefGoogle Scholar
  14. 14.
    Yang, X., Li, C., Yang, L., Yan, Y., and Qian, Y., Reduction-nitridation synthesis of titanium nitride nanocrystals, J. Am. Ceram. Soc., 2003, vol. 86, no. 1, pp. 206–208.CrossRefGoogle Scholar
  15. 15.
    Ramanuja, N., Levy, R.A., Dharmadhikari, S.N., Ramos, E., Pearce, C.W., Menasian, S.C., Schamberger, P.C., and Collins, C.C., Synthesis and characterization of low pressure chemically vapor deposited titanium nitride films using TiCl4 and NH3, Mater. Lett., 2002, vol. 57, pp. 261–269.CrossRefGoogle Scholar
  16. 16.
    Fix, R.M., Gordon, R.G., and Hoffman, D.M., Synthesis of thin films by atmospheric pressure chemical vapor deposition using amido and imido titanium(IV) compounds as precursors, Chem. Mater., 1990, vol. 2, pp. 235–241.CrossRefGoogle Scholar
  17. 17.
    Kuznetsov, K.B., Solntsev, K.A., and Chernyavskii, A.S., RF Patent 2 337 058, 2008.Google Scholar
  18. 18.
    Diagrammy sostoyaniya dvoinykh metallicheskikh sistem. Spravochnik (Phase Diagrams of Binary Metallic Systems: A Handbook), Lyakishev, N.P., Ed., Moscow: Mashinostroenie, 1996Google Scholar
  19. 19.
    Kovalev, I.A., Kuznetsov, K.B., Zufman, V.Yu., Ogarkov, A.I., Shevtsov, S.V., Kannykin, S.V., Chernyavskii, A.S., and Solntsev, K.A., High-temperature titanium nitridation kinetics, Inorg. Mater., 2016, vol. 52, no. 12, pp. 1230–1234.CrossRefGoogle Scholar
  20. 20.
    Pecharsky, V.K. and Zavalij, P.Y., Fundamentals of Powder Diffraction and Structural Characterization of Materials, Berlin: Springer, 2009.Google Scholar
  21. 21.
    Petříček, V., Dušek, M., and Palatinus, L., Crystallographic computing system JANA2006: general features, Z. Kristallogr., 2014, vol. 229, no. 5, pp. 345–352.Google Scholar
  22. 22.
    Höche, D. Schikora, H., et al., Tin-coating formation by pulsed Nd:YAG laser irradiation of titanium in nitrogen, J. Coat. Technol. Res., 2008, vol. 5, no. 14, pp. 505–512.CrossRefGoogle Scholar
  23. 23.
    Samsonov, G.V., Nitridy (Nitrides), Kiev: Naukova Dumka, 1969.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • S. V. Shevtsov
    • 1
  • I. A. Kovalev
    • 1
  • A. I. Ogarkov
    • 1
  • S. V. Kannykin
    • 2
  • D. V. Prosvirnin
    • 1
  • A. S. Chernyavskii
    • 1
  • K. A. Solntsev
    • 1
  1. 1.Baikov Institute of Metallurgy and Materials ScienceRussian Academy of SciencesMoscowRussia
  2. 2.Voronezh State UniversityVoronezhRussia

Personalised recommendations