Advertisement

Inorganic Materials

, Volume 54, Issue 3, pp 229–232 | Cite as

One-Step Synthesis of a Hybrid of Graphene Films and Ribbons

  • V. N. Matveev
  • V. T. Volkov
  • V. I. Levashov
  • O. V. Kononenko
  • I. I. Khodos
Article
  • 20 Downloads

Abstract

Hybrid structures composed of graphene films and (0001) graphene ribbons perpendicular to the surface of a graphene-like film have been produced through the catalytic decomposition of a carbon-containing gas on an Al-coated SiO2/Si substrate having Ni catalyst islands on its surface. A hybrid structure has been grown by a one-step chemical vapor deposition process, by admitting acetylene into a chamber for a short time. The hybrid structures thus produced have been used to fabricate Hall sensors with a sensitivity of 3000 Ω/T. The synthesized hybrid structures are potential candidates for use in nanoelectronic devices, energy storage systems, etc. The technique proposed for the growth of such films is compatible with technologies that are employed in the electronics industry.

Keywords

graphene electron microscopy thin films 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Morozov, S.V., Novoselov, K.S., Katsnelson, M.I., Schedin, F., Elias, D.C., Jaszczak, J.A., et al., Giant intrinsic carrier mobilities in graphene and its bilayer, Phys. Rev. Lett., 2008, vol. 100, pp. 016 602–016 604.Google Scholar
  2. 2.
    Bolotin, K.I., Sikes, K.J., Jiang, Z., Fudenberg, G., Hone, J., Kim, P., et al., Ultrahigh electron mobility in suspended graphene, Solid State Commun., 2008, vol. 146, pp. 351–355.CrossRefGoogle Scholar
  3. 3.
    Ghosh, S., Calizo, I., Teweldebrhan, D., Pokatilov, E.P., Nika, D.L., Balandin, A.A., et al., Extremely high thermal conductivity of graphene: prospects for thermal management applications in nanoelectronic circuits, Appl. Phys. Lett., 2008, vol. 92, pp. 151 911–151 913.Google Scholar
  4. 4.
    Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., et al., Electric field effect in atomically thin carbon films, Science, 2004, vol. 306, pp. 666–669.CrossRefGoogle Scholar
  5. 5.
    Reddy, D., Register, L.F., Carpenter, G.D., and Banerjee, S.K., Graphene field-effect transistors, J. Phys. D: Appl. Phys., 2011, vol. 44, pp. 313 001–313 020.CrossRefGoogle Scholar
  6. 6.
    De Heer, W.A., Chatelain, A., and Ugarte, D., A carbon nanotube field-emission electron source, Science, 1995, vol. 270, pp. 1179–1180.CrossRefGoogle Scholar
  7. 7.
    Wu, Z., Chen, Z., Du, X., Logan, J.M., Sippel, J., Nikolou, M., et al., Transparent, conductive carbon nanotube films, Science, 2004, vol. 305, pp. 1273–1276.CrossRefGoogle Scholar
  8. 8.
    Fan, Z., Yan, J., Zhi, L., Zhang, Q., Wei, T., Feng, J., et al., A three-dimensional carbon nanotube/graphene sandwich and its application as electrode in supercapacitors, Adv. Mater., 2010, vol. 22, pp. 3723–3728.CrossRefGoogle Scholar
  9. 9.
    Kim, Y.S., Kumar, K., Fisher, F.T., and Yang, E.H., Out-of-plane growth of CNTs on graphene for supercapacitor applications, Nanotechnology, 2012, vol. 23, pp. 015 301–015 307.Google Scholar
  10. 10.
    Cheng, H.M., Yang, Q.H., and Liu, C., Hydrogen storage in carbon nanotubes, Carbon, 2001, vol. 39, pp. 1447–1454.CrossRefGoogle Scholar
  11. 11.
    Matsumoto, T. and Saito, S., Geometric and electronic structure of new carbon-network materials: nanotube array on graphite sheet, J. Phys. Soc. Jpn., 2002, vol. 71, pp. 2765–2770.CrossRefGoogle Scholar
  12. 12.
    Yu, D. and Dai, L., Self-assembled graphene/carbon nanotube hybrid films for supercapacitors, J. Phys. Chem. Lett., 2010, vol. 1, pp. 467–470.CrossRefGoogle Scholar
  13. 13.
    Zhao, M.Q., Liu, X.F., Zhang, Q., Tian, G.L., Huang, J.Q., Zhu, W., et al., Graphene/single-walled carbon nanotube hybrids: one-step catalytic growth and applications for high-rate Li–S batteries, ACS Nano, 2012, vol. 6, pp. 10 759–10 769.CrossRefGoogle Scholar
  14. 14.
    Zhu, Y., Li, L., Zhang, C., Casillas, G., Sun, Z., Yan, Z., et al., A seamless three-dimensional carbon nanotube graphene hybrid material, Nat. Commun., 2012, vol. 3, pp. 1225–1227.CrossRefGoogle Scholar
  15. 15.
    Dong, X., Li, B., Wei, A., Cao, X., Chan-Park, M.B., Zhang, H., et al., One-step growth of graphene–carbon nanotube hybrid materials by chemical vapor deposition, Carbon, 2011, vol. 49, pp. 2944–2949.CrossRefGoogle Scholar
  16. 16.
    Ghazinejad, M., Guo, S., Wang, W., Ozkan, M., and Ozkan, C.S., Synchronous chemical vapor deposition of large-area hybrid graphene–carbon nanotube architectures, J. Mater. Res., 2013, vol. 28, pp. 958–968.CrossRefGoogle Scholar
  17. 17.
    Zhu, X., Ning, G., Fan, Z., Gao, J., Xu, C., Qian, W., et al., One-step synthesis of a graphene–carbon nanotube hybrid decorated by magnetic nanoparticles, Carbon, 2012, vol. 50, pp. 2764–2771.CrossRefGoogle Scholar
  18. 18.
    Kasumov, Y.A., Shailos, A., Khodos, I.I., Volkov, V.T., Levashov, V.I., Matveev, V.N., et al., CVD growth of carbon nanotubes at very low pressure of acetylene, Appl. Phys. A, 2007, vol. 88, pp. 687–691.CrossRefGoogle Scholar
  19. 19.
    Yu, Q., Lian, J., Siriponglert, S., Li, H., Chen, Y., and Pei, S.-S., Graphene segregated on Ni surfaces and transferred to insulators, Appl. Phys. Lett., 2008, vol. 93, paper 113 103.Google Scholar
  20. 20.
    Peng, Z., Zomodi, F., Helveg, S., Kisielowski, C., Specht, P., and Bell, A., High resolution in situ and ex situ TEM studies on graphene formation and growth on Pt nanoparticles, J. Catal., 2012, vol. 286, pp. 22–29.CrossRefGoogle Scholar
  21. 21.
    Matveev, V.N., Levashov, V.I., Kononenko, O.V., Matveev, D.V., Kasumov, Yu.A., Khodos, I.I., and Volkov, V.T., Hall effect sensors on the basis of carbon material, Mater. Lett., 2015, vol. 158, pp. 384–387.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • V. N. Matveev
    • 1
  • V. T. Volkov
    • 1
  • V. I. Levashov
    • 1
  • O. V. Kononenko
    • 1
  • I. I. Khodos
    • 1
  1. 1.Institute of Microelectronics Technology and High Purity MaterialsRussian Academy of SciencesChernogolovka, Moscow oblastRussia

Personalised recommendations