Inorganic Materials

, Volume 54, Issue 3, pp 245–252 | Cite as

Order–Disorder Structural Transformations in Nanocrystalline Highly Imperfect Gd2MO5 (M = Zr and Hf) Fluorite Derivatives

  • L. P. LyashenkoEmail author
  • L. G. Shcherbakova
  • I. I. Tartakovskii
  • A. A. Maksimov
  • R. D. Svetogorov
  • Ya. V. Zubavichus


Order–disorder phenomena in nanocrystalline Gd2ZrO5 and Gd2HfO5 with highly imperfect fluorite- derived structures in the range 1000–1600°C have been studied using monochromatic synchrotron X-ray diffraction and Raman spectroscopy. The results demonstrate that the synthesis process leads to the formation of two coherent phases identical in composition: a nanocrystalline disordered fluorite-like (F) phase (Fm3m) and a nanoparticulate ordered fluorite derivative (C1) (Ia3). Their lattice parameters have been determined. In the range 1000–1600°C, the Raman spectra of the Gd2ZrO5 and Gd2HfO5 materials contain broad bands in low- and high-frequency regions, at ~118 (108), 362 (353), and 670 (665) cm–1, which characterize the C1 and F phases, respectively.


synchrotron X-ray diffraction Raman spectra scanning electron microscopy Gd2ZrO5 and Gd2HfO5 fluorite derivatives order–disorder structural transformations 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Knauth, P. and Tuller, H.L., Solid-state ionics: roots, status, and future prospects, J. Am. Ceram. Soc., 2002, vol. 85, no. 7, pp. 1654–1680.CrossRefGoogle Scholar
  2. 2.
    Tuller, H.L., Mixed ionic–electronic conduction in a number of fluorite and pyrochlore compounds, Solid State Ionics, 1992, vol. 52, nos. 1–3, pp. 135–146.CrossRefGoogle Scholar
  3. 3.
    Kharton, V.V., Marques, F.M.B., and Atkinson, A., Transport properties of solid oxide electrolyte ceramics: a brief review, Solid State Ionics, 2004, vol. 174, nos. 1–4, pp. 135–149.CrossRefGoogle Scholar
  4. 4.
    Diaz-Guillen, J.A., Diaz-Guillen, M.R., Padmasree, K.P., Fuentes, A.F., Santamaria, J., and Leon, C., High ionic conductivity in the pyrochlore-type Gd2–yLayZr2O7 solid solutions (0 ≤ y ≤ 1), Solid State Ionics, 2008, vol. 179, pp. 2160–2164.CrossRefGoogle Scholar
  5. 5.
    Cao, X.Q., Vassen, R., and Stoever, D., Ceramic materials for thermal barrier coatings, J. Eur. Ceram. Soc., 2004, vol. 24, pp. 1–10.CrossRefGoogle Scholar
  6. 6.
    Eagleman, Y., Weber, M., Chaudhary, A., and Derenzo, S., Luminescence study of cerium-doped La2Hf2O7: effects due to trivalent and tetravalent cerium and oxygen vacancies, J. Lumin., 2012, vol. 132, pp. 2889–2896.CrossRefGoogle Scholar
  7. 7.
    Wei, F., Tu, H., Wang, Y., Yue, S., and Du, J., Epitaxy growth and electrical properties of La2Hf2O7 thin films on Si (001) substrate by pulsed laser deposition, J. Phys.: Conf. Ser., 2009, vol. 152, paper 012 003.Google Scholar
  8. 8.
    Liu, T., Zhang, X., Yuan, L., and Yu, J., A review of high-temperature electromechanical sensors based on stabilized zirconia, Solid State Ionics, 2015, vol. 283, pp. 91–102.CrossRefGoogle Scholar
  9. 9.
    Mohammadi, M.R., Ghorbani, M., and Fray, D.J., Preparation and characterization of nanostructural TiO2–Er2O3 binary oxides with high surface area derived from particulate sol–gel route, Mater. Sci. Technol., 2006, vol. 7, no. 8, pp. 965–974.CrossRefGoogle Scholar
  10. 10.
    Zhang, Y., Li, H., and Moricca, S., Pyrochlore-structured titanate ceramics for immobilization of actinides: hot isostatic pressing (HIPing) and stainless steel/waste form interactions, J. Nucl. Mater., 2008, vol. 377, no. 3, pp. 470–475.CrossRefGoogle Scholar
  11. 11.
    Lyashenko, L.P., Nikonov, Yu.P., Raevskii, A.V., and Shcherbakova, L.G., Formation mechanisms of fluorite-like phases in the TiO2–R2O3 (R = Y, Er, Sc) systems, Materialovedenie, 1999, no. 1, pp. 29–33.Google Scholar
  12. 12.
    Lyashenko, L.P., Shcherbakova, L.G., Belov, D.A., Knerel’man, E.I., and Dremova, N.N., Structural and electrical properties of nanostructured fluorite-like R2 + xTiO5 + 1.5x (R = Y, Er; 0 ≤ x ≤ 1), Inorg. Mater., 2013, vol. 49, no. 1, pp. 70–75. doi 10.1134/S0020168513010068CrossRefGoogle Scholar
  13. 13.
    Lyashenko, L.P., Shcherbakova, L.G., Belov, D.A., and Knotko, A.V., Electrical conductivity of nanostructured fluorite-like Sc4Ti3O,, Inorg. Mater., 2009, vol. 45, no. 5, pp. 543–549.CrossRefGoogle Scholar
  14. 14.
    Lyashenko, L.P., Shcherbakova, L.G., Kulik, E.S., Svetogorov, R.D., and Zubavichus, Ya.V., Synchrotron X-ray diffraction study of nanostructured Er2O3–TiO2 (50–60 mol % Er2O3) solid solutions, Inorg. Mater., 2013, vol. 49, no. 12, pp. 1213–1219. doi 10.1134/S0020168513120108CrossRefGoogle Scholar
  15. 15.
    Lyashenko, L.P., Shcherbakova, L.G., Kulik, E.S., Svetogorov, R.D., and Zubavichus, Ya.V., Defect structure of xY2O3 · (1 − x)TiO2 (x = 0.5–0.58) solid solutions, Inorg. Mater., 2014, vol. 50, no. 12, pp. 1230–1234. doi 10.1134/S0020168514120152CrossRefGoogle Scholar
  16. 16.
    Lyashenko, L.P., Shcherbakova, L.G., Karelin, A.I., Smirnov, V.A., Kulik, E.S., Svetogorov, R.D., and Zubavichus, Ya.V., Synthesis, X-ray structure analysis, and Raman spectroscopy of R2TiO-based (R = Sc, Y) solid solutions, Inorg. Mater., 2016, vol. 52, no. 5, pp. 483–489. doi 10.1134/S0020168516050095Google Scholar
  17. 17.
    Lyashenko, L.P., Shcherbakova, L.G., Kulik, E.S., Svetogorov, R.D., and Zubavichus, Ya.V., Defect structure of xSc2O3 · (1 − x)TiO2 (x = 0.4–0.5) solid solutions, Inorg. Mater., 2015, vol. 51, no. 2, pp. 158–162. doi 10.1134/S0020168515020120CrossRefGoogle Scholar
  18. 18.
    Lyashenko, L.P., Shcherbakova, L.G., Kolbanev, I.V., Knerel’man, E.I., and Davydova, G.I., Mechanism of structure formation in samarium and holmium titanates prepared from mechanically activated oxides, Inorg. Mater., 2007, vol. 43, no. 1, pp. 46–54.CrossRefGoogle Scholar
  19. 19.
    Lyashenko, L.P., Belov, D.A., and Shcherbakova, L.G., Conductivity of Sm2Ti2O7 and Sm2TiO5, Inorg. Mater., 2008, vol. 44, no. 12, pp. 1349–1353.CrossRefGoogle Scholar
  20. 20.
    Aughterson, R.D., Lumpkin, G.R., Reyes, M., Sharma, N., Ling, C.D., Gault, B., Smith, K.L., Avdeev, M., and Cairney, J.M., Crystal structures of orthorhombic, hexagonal, and cubic compounds of the Sm(x)Yb(2–x)TiO5 series, J. Solid State Chem., 2014, vol. 213, pp. 182–192.CrossRefGoogle Scholar
  21. 21.
    Lyashenko, L.P., Shcherbakova, L.G., Belov, D.A., Knerel’man, E.I., and Dremova, N.N., Synthesis and electrical properties of Gd2MO5 (M = Zr, Hf), Inorg. Mater., 2010, vol. 46, no. 12, pp. 1341–1347.CrossRefGoogle Scholar
  22. 22.
    Lyashenko, L.P. and Shcherbakova, L.G., X-ray diffraction data for fluorite-like Gd2ZrO5 and Gd2HfO5, Inorg. Mater., 2012, vol. 48, no. 1, pp. 54–56.CrossRefGoogle Scholar
  23. 23.
    Diagrammy sostoyaniya sistem tugoplavkikh okislov: Spravochnik (Phase Diagrams of Refractory Oxide Systems: A Handbook), Galakhov, F.Ya., Ed., Leningrad: Nauka, 1985, issue 5, part 1.Google Scholar
  24. 24.
    Powder Diffraction File, Swarthmore: Joint Committee on Powder Diffraction Standards, card no. 43-1014.Google Scholar
  25. 25.
    Shannon, R.D. and Prewitt, C.T., Effective ionic radii in oxides and fluorides, Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem., 1969, vol. 25, no. 5, pp. 925–946.CrossRefGoogle Scholar
  26. 26.
    Blanchard, P.E.R., Liu, S., Kennedy, B.J., and Ling, C.D., Investigating the local structure of lanthanoid hafnates Ln2Hf2O7 via diffraction and spectroscopy, J. Phys. Chem. C, 2013, vol. 117, pp. 2266–2273.CrossRefGoogle Scholar
  27. 27.
    Etsell, T.H. and Flengas, S.N., The electrical properties of solid oxide electrolytes, Chem. Rev., 1970, vol. 70, no. 3, pp. 339–376.CrossRefGoogle Scholar
  28. 28.
    Michel, D., Pererez, M., Jorba, Y., and Collongues, R., Study by Raman spectroscopy of order–disorder phenomena occurring in some binary oxides with fluoriterelated structures, J. Raman Spectrosc., 1976, vol. 5, pp. 63–180.CrossRefGoogle Scholar
  29. 29.
    Glerup, M., Nielsen, O.F., and Poulsen, F.W., The structural transformation from the pyrochlore structure, A2B2O7, to the fluorite structure, A2O2, studied by Raman spectroscopy and defect chemistry modeling, J. Solid State Chem., 2001, vol. 160, no. 1, pp. 25–32.CrossRefGoogle Scholar
  30. 30.
    Aleksandrov, V.I., Voron’ko, Yu.K., Ignat’ev, B.V., Lomonova, E.E., Osiko, V.V., and Sobol’, A.A., A Raman scattering study of structural transformations in zirconia- and hafnia-based solid solutions, Fiz. Tverd. Tela (Leningrad), 1978, vol. 20, no. 2, pp. 528–534.Google Scholar
  31. 31.
    Nomura, K., Mizutani, Y., Kawai, M., Nakamura, Y., and Yamamoto, O., Aging and Raman scattering study of scandia and yttria doped zirconia, Solid State Ionics, 2000, vol. 132, pp. 235–239.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • L. P. Lyashenko
    • 1
    Email author
  • L. G. Shcherbakova
    • 2
  • I. I. Tartakovskii
    • 3
  • A. A. Maksimov
    • 3
  • R. D. Svetogorov
    • 4
  • Ya. V. Zubavichus
    • 4
  1. 1.Institute of Problems of Chemical PhysicsRussian Academy of SciencesChernogolovka, Noginskii raion, Moscow oblastRussia
  2. 2.Semenov Institute of Chemical PhysicsRussian Academy of SciencesMoscowRussia
  3. 3.Institute of Solid State PhysicsRussian Academy of SciencesChernogolovka, Noginskii raion, Moscow oblastRussia
  4. 4.Kurchatov Institute National Research CentreMoscowRussia

Personalised recommendations