Inorganic Materials

, Volume 54, Issue 3, pp 240–244 | Cite as

Formation of Compounds in the Ag2O–Sb2O3–MoO3 System on Heating

  • Yu. A. Lupitskaya
  • D. A. Kalganov
  • M. V. Klyueva


This paper presents a detailed study of phase formation processes in the AgNO3–Sb2O3–MoO3 system during heating in air. The compositions of the solid-state reaction products have been determined using thermogravimetry and qualitative X-ray diffraction. The results demonstrate that, at a final heat treatment temperature of 1023 K, synthesis yields a range of Ag2–xSb2–xMo x O6 compounds with the pyrochlore structure and 0.0 ≤ x ≤ 2.0. The structural parameters of the synthesized phases have been refined by the Rietveld method in space group Fdm and their electrical conductivity has been measured.


phase formation pyrochlore structure Rietveld method electrical transport properties 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Stenina, I.A. and Yaroslavtsev, A.B., Low- and intermediate- temperature proton-conducting electrolytes, Inorg. Mater., 2017, vol. 53, no. 3, pp. 253–262.CrossRefGoogle Scholar
  2. 2.
    Nikodemski, S., Tong, J., and O’Hayre, R., Solid-state reactive sintering mechanism for proton conducting ceramics, Solid State Ionics, 2013, vol. 253, pp. 201–210.CrossRefGoogle Scholar
  3. 3.
    Lupitskaya, Yu.A. and Burmistrov, V.A., Ionic conductivity of potassium antimonate tungstates with partial Na+ or Li+ substitution for K+, Inorg. Mater., 2013, vol. 49, no. 9, pp. 930–934.CrossRefGoogle Scholar
  4. 4.
    Pinus, I.Yu., Yaroslavtsev, A.B., Nasybulin, E.N., Sergeev, V.G., and Kabanov, V.A., Solid composite electrolytes based on zirconium hydrogen phosphate and polyaniline, Russ. J. Inorg. Chem., 2006, vol. 51, no. 6, pp. 964–966.CrossRefGoogle Scholar
  5. 5.
    Asabina, E.A., Pet’kov, V.I., Boguslavskii, M.V., Malakho, A.P., and Lazoryak, B.I., Phase formation, crystal structure, and electrical conductivity of triple phosphates of alkali metals and titanium, Russ. J. Inorg. Chem., 2006, vol. 51, no. 8, pp. 1167–1175.CrossRefGoogle Scholar
  6. 6.
    Il’ina, A.A., Stenina, I.A., Lysanova, G.V., Veresov, A.G., and Yaroslavtsev, A.B., Silver magnesium molybdate and silver cobalt molybdate: synthesis and ionic conductivity, Russ. J. Inorg. Chem., 2006, vol. 51, no. 6, pp. 890–894.CrossRefGoogle Scholar
  7. 7.
    Uvarov, N.F. and Boldyrev, V.V., Size effects in the chemistry of heterogeneous systems, Usp. Khim., 2001, vol. 70, no. 4, pp. 307–329.CrossRefGoogle Scholar
  8. 8.
    Burmistrov, V.A. and Zakhar’evich, D.A., Ion-conducting defect pyrochlore phases in the K2O–Sb2O3–WO3 system, Inorg. Mater., 2003, vol. 34, no. 1, pp. 68–71.CrossRefGoogle Scholar
  9. 9.
    Shlyakhtina, A.V., Savvin, S.N., Levchenko, A.V., Kolbanev, I.V., Karyagina, O.K., and Shcherbakova, L.G., Synthesis and high-temperature electrical conductivity of Ln2Ti2O7 and LnYTi2O7 (Ln = Dy, Ho), Inorg. Mater., 2008, vol. 44, no. 3, pp. 299–304.CrossRefGoogle Scholar
  10. 10.
    Burmakin, E.I. and Shekhtman, G.Sh., Potassium ion conducting K2–2xFe2–xPxO4 solid electrolytes, Inorg. Mater., 2008, vol. 44, no. 8, pp. 882–885.CrossRefGoogle Scholar
  11. 11.
    Goodenough, J.B., Oxide-ion electrolytes, Annu. Rev. Mater. Res., 2003, vol. 33, pp. 91–128.CrossRefGoogle Scholar
  12. 12.
    Lupitskaya, Yu.A., Burmistrov, V.A., and Kalganov, D.A., Structure and ionic conductivity of solid solutions in the K2CO3–AgNO3–Sb2O3–MeO3 system (Me = W or Mo), J. Surf. Invest.: X-Ray, Synchrotron Neutron Tech., 2015, vol. 9, no. 3, pp. 624–629.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • Yu. A. Lupitskaya
    • 1
  • D. A. Kalganov
    • 1
  • M. V. Klyueva
    • 2
  1. 1.Chelyabinsk State UniversityChelyabinskRussia
  2. 2.Moscow Institute of Steel and Alloys (National University of Science and Technology)MoscowRussia

Personalised recommendations