Advertisement

Inorganic Materials

, Volume 54, Issue 3, pp 233–236 | Cite as

Synthesis of Hybrid Materials Based on Iron Nanoparticle-Decorated Multiwalled Carbon Nanotubes

  • K. V. Kremlev
  • A. M. Ob”edkov
  • S. Yu. Ketkov
  • B. S. Kaverin
  • N. M. Semenov
  • T. I. Lopatina
  • S. A. Gusev
  • D. A. Tatarskii
  • P. A. Yunin
Article
  • 26 Downloads

Abstract

Fe-containing nanoparticles have been grown for the first time on the surface of multiwalled carbon nanotubes by metalorganic chemical vapor deposition using iron acetylacetonate, Fe(acac)3, as a precursor. The resultant hybrid nanomaterial has been characterized by X-ray diffraction, scanning electron microscopy, high-resolution transmission electron microscopy, and thermogravimetric analysis. The results demonstrate that the synthesized material consists of multiwalled carbon nanotubes whose surface is decorated with iron nanoparticles.

Keywords

carbon nanotubes hybrid materials composites MOCVD iron nanoparticles 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    He, Z., Chen, J., Liu, D., Zhou, H., and Kuang, Y., Electrodeposition of Pt–Ru nanoparticles on carbon nanotubes and their electrocatalytic properties for methanol electrooxidation, Diamond Relat. Mater., 2004, vol. 13, no. 10, pp. 1764–1770.CrossRefGoogle Scholar
  2. 2.
    Korchagin, O.V., Novikov, V.T., Rakov, E.G., Kuznetsov, V.V., and Tarasevich, M.R., Carbon nanotubes as efficient catalyst supports for fuel cells with direct ethanol oxidation, Russ. J. Electrochem., 2010, vol. 46, no. 8, pp. 882–889.CrossRefGoogle Scholar
  3. 3.
    Rao, R., Ling, Q., Dong, H., Dong, X., and Zhang, A., Effect of surface modification on multi-walled carbon nanotubes for catalytic oxidative dehydrogenation using CO2 as oxidant, Chem. Eng. J., 2016, vol. 301, pp. 115–122.CrossRefGoogle Scholar
  4. 4.
    Sun, Z., Zhang, X., Na, N., Liu, Z., Han, B., and An, G., Synthesis of ZrO2–carbon nanotube composites and their application as chemiluminescent sensor material for ethanol, J. Phys. Chem. B, 2006, vol. 110, pp. 13 410–13 414.CrossRefGoogle Scholar
  5. 5.
    Salehi, S., Nikan, E., Khodadi, A.A., and Mortazavi, Y., Highly sensitive carbon nanotubes–SnO2 nanocomposite sensor for acetone detection in diabetes mellitus breath, Sens. Actuators, B, 2014, vol. 205, pp. 261–267.CrossRefGoogle Scholar
  6. 6.
    Mo, C.B., Cha, S.I., Kim, K.T., Lee, K.H., and Hong, S.H., Fabrication of carbon nanotube reinforced alumina matrix nanocomposite by sol–gel process, Mater. Sci. Eng., A, 2005, vol. 395, pp. 124–128.CrossRefGoogle Scholar
  7. 7.
    Kim, H.H., Babu, J.S.S., and Kang, C.G., Fabrication of A356 aluminum alloy matrix composite with CNTs/Al2O3 hybrid reinforcements, Mater. Sci. Eng., A, 2013, vol. 573, pp. 92–99.CrossRefGoogle Scholar
  8. 8.
    Schnepp, Z., Wimbush, S.C., Antonietti, M., and Giordano, C., Synthesis of highly magnetic iron carbide nanoparticles via a biopolymer route, Chem. Mater., 2010, vol. 22, pp. 5340–5344.CrossRefGoogle Scholar
  9. 9.
    Sajitha, E.P., Prasad, V., Subramanyam, S.V., Mishra, A.K., and Sarkar, S.B., Size-dependent magnetic properties of iron carbide nanoparticles embedded in a carbon matrix, J. Phys.: Condens. Matter, 2007, vol. 19, paper 046 214.Google Scholar
  10. 10.
    Sajitha, E.P., Prasad, V., Subramanyam, S.V., Eto, S., Takai, K., and Enoki, T., Synthesis and characteristics of iron nanoparticles in a carbon matrix along with the catalytic graphitization of amorphous carbon, Carbon, 2004, vol. 42, no. 14, pp. 2815–2820.CrossRefGoogle Scholar
  11. 11.
    Cheng, J.P., Zhang, X.B., Yi, G.F., Ye, Y., and Xia, M.S., Preparation and magnetic properties of iron oxide and carbide nanoparticles in carbon nanotube matrix, J. Alloys Compd., 2008, vol. 455, nos. 1–2, pp. 5–9.CrossRefGoogle Scholar
  12. 12.
    Nene, A.G., Takahashi, M., and Somani, P.R., Fe3O4 and Fe nanoparticles by chemical reduction of Fe(acac)3 by ascorbic acid: role of water, World J. Nano Sci. Eng., 2016, vol. 6, pp. 20–28.CrossRefGoogle Scholar
  13. 13.
    Xie, J., Peng, S., Brower, N., Pourmand, N., Wang, S.X., and Sun, S., One-pot synthesis of monodisperse iron oxide nanoparticles for potential biomedical applications, Pure Appl. Chem., 2006, vol. 78, no. 5, pp. 1003–1014.CrossRefGoogle Scholar
  14. 14.
    Maity, D., Kale, S.N., Kaul-Ghanekar, R., Xue, J.-M., and Ding, J., Studies of magnetite nanoparticles synthesized by thermal decomposition of iron(III) acetylacetonate in tri(ethylene glycol), J. Magn. Magn. Mater., 2009, vol. 321, pp. 3093–3098.CrossRefGoogle Scholar
  15. 15.
    Maity, D., Choo, S.-G., Yi, J., Ding, J., and Xue, J.-M., Synthesis of magnetite nanoparticles via a solvent-free thermal decomposition route, J. Magn. Magn. Mater., 2009, vol. 321, pp. 1256–1259.CrossRefGoogle Scholar
  16. 16.
    Tsyganova, E.I. and Dyagileva, L.M., Reactivity of metal β-diketonates in thermal decomposition reactions, Usp. Khim., 1996, vol. 65, no. 4, pp. 334–349.CrossRefGoogle Scholar
  17. 17.
    Kim, J.D., Kang, B.S., Noh, T.W., Yoon, G.-G., Baik, S.I., and Kim, Y.W., Controlling the nanostructure of RuO2/carbon nanotube composites by gas annealing, J. Electrochem. Soc., 2005, vol. 152, no. 2, pp. 23–25.CrossRefGoogle Scholar
  18. 18.
    Kremlev, K.V., Ob”edkov, A.M., Ketkov, S.Yu., Kaverin, B.S., Semenov, N.M., Gusev, S.A., and Andreev, P.V., Deposition of nanocrystalline nonstoichiometric chromium oxide coatings on the surface of multiwalled carbon nanotubes by chromium acetylacetonate vapor pyrolysis, Tech. Phys. Lett., 2017, vol. 43, no. 4, pp. 396–398.CrossRefGoogle Scholar
  19. 19.
    Ob”edkov, A.M., Kaverin, B.S., Egorov, V.A., Semenov, N.M., Ketkov, S.Yu., Domrachev, G.A., Kremlev, K.V., Gusev, S.A., Perevezentsev, V.N., Moskvichev, A.N., Moskvichev, A.A., and Rodionov, A.S., Macrocylinders based on radially oriented multiwalled carbon nanotubes, Pis’ma Mater., 2012, vol. 2, pp. 152–156.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • K. V. Kremlev
    • 1
  • A. M. Ob”edkov
    • 1
  • S. Yu. Ketkov
    • 1
  • B. S. Kaverin
    • 1
  • N. M. Semenov
    • 1
  • T. I. Lopatina
    • 1
  • S. A. Gusev
    • 2
  • D. A. Tatarskii
    • 2
  • P. A. Yunin
    • 2
  1. 1.Razuvaev Institute of Organometallic ChemistryRussian Academy of SciencesNizhny NovgorodRussia
  2. 2.Institute for Physics of MicrostructuresRussian Academy of SciencesKstovskii raion, Nizhny Novgorod oblastRussia

Personalised recommendations