Advertisement

Inorganic Materials

, Volume 54, Issue 3, pp 288–294 | Cite as

Synthesis, X-ray Diffraction Characterization, Mössbauer Spectroscopy, and Dielectric Properties of Solid Solutions in the PbFe2/3W1/3O3–PbSc2/3W1/3O3 System

  • A. F. Koroleva
  • A. A. Bush
  • K. E. Kamentsev
  • V. Ya. Shkuratov
  • S. A. Ivanov
  • V. M. Cherepanov
  • S. Shafeie
Article

Abstract

Ceramic Pb(Fe1–xSc x )2/3W1/3O3 samples with 0 ≤ x ≤ 1 have been prepared and characterized by X-ray diffraction, Mössbauer spectroscopy, and dielectric and pyroelectric measurements. The stoichiometry ranges of the perovskite solid solutions in this system have been identified, their structural parameters have been determined, and their dielectric permittivity, dielectric loss tangent, resistivity, and thermally stimulated depolarization current have been measured as functions of temperature. The composition dependences of the dielectric properties for the solid solutions have been obtained. The solid solutions have been shown to exhibit ferroelectric relaxor properties, with a well-defined maximum in their permittivity in the range 180–250 K.

Keywords

ferroelectric ceramics magnetoelectric materials solid solutions perovskite structure dielectric properties Mössbauer spectroscopy X-ray powder diffraction 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Venevtsev, Yu.N., Politova, E.D., and Ivanov, S.A., Segnetoelektriki i antisegnetoelektriki semeistva titanata bariya (Ferro- and Antiferroelectrics of the Barium Titanate Family), Moscow: Khimiya, 1985.Google Scholar
  2. 2.
    Park, S.E. and Hackenberger, W., High performance single crystal piezoelectrics: applications and issues, Curr. Opin. Solid State Mater. Sci., 2002, vol. 6, no. 1, pp. 11–18.CrossRefGoogle Scholar
  3. 3.
    Pyatakov, A.P. and Zvezdin, A.K., Magnetoelectric materials and multiferroics, Usp. Fiz. Nauk, 2012, vol. 182, no. 6, pp. 593–620.CrossRefGoogle Scholar
  4. 4.
    Ivanov, S.A., Eriksson, S.-G., Tellgren, R., and Rundloof, H., Neutron powder diffraction study of the magnetoelectric relaxor Pb(Fe2/3W1/3)O3, Mater. Res. Bull., 2004, vol. 39, nos. 14–15, pp. 2317–2328.CrossRefGoogle Scholar
  5. 5.
    Bokov, A.A. and Ye, Z.-G., Recent progress in relaxor ferroelectrics with perovskite structure, J. Mater. Sci., 2006, vol. 41, no. 1, pp. 31–52.CrossRefGoogle Scholar
  6. 6.
    Juhas, P., Grinberg, I., Rappe, A.M., Dmowski, W., Egami, T., and Davies, P.K., Correlations between the structure and dielectric properties of Pb(Sc2/3W1/3)O3–Pb(Ti/Zr)O3 relaxors, Phys. Rev. B: Condens. Matter Mater. Phys., 2004, vol. 69, paper 214 101.Google Scholar
  7. 7.
    Shannon, R.D., Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides, Acta Crystallogr., Sect. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr., 1976, vol. 32, no. 5, pp. 751–767.Google Scholar
  8. 8.
    Smolenskii, G.A. and Chupis, I.E., Magnetoelectric materials, Usp. Fiz. Nauk, 1982, vol. 137, no. 3, pp. 415–444.CrossRefGoogle Scholar
  9. 9.
    Venevtsev, Yu.N., Gagulin, V.V., and Lyubimov, V.N., Segnetomagnetiki (Magnetoelectric Materials), Moscow: Nauka, 1982.Google Scholar
  10. 10.
    Ye, Z.-G. and Schmid, H., Electric field induced effect on the optical, dielectric and ferroelectric properties of Pb(Fe2/3W1/3)O3 single crystals, Ferroelectrics, 1994, vol. 162, no. 1, pp. 119–133.CrossRefGoogle Scholar
  11. 11.
    Shrout, T.R. and Halliyal, A., Preparation of leadbased ferroelectric relaxors for capacitors, Am. Ceram. Soc. Bull., 1987, vol. 66, no. 4, pp. 704–711.Google Scholar
  12. 12.
    Wongmaneerung, R., Tan, X., McCallum, R.W., Ananta, S., and Yimnirun, R., Cation, dipole, and spin order in PbFe2/3W1/3O3-based magnetoelectric multiferroic compounds, Appl. Phys. Lett., 2007, vol. 90, paper 242 905.Google Scholar
  13. 13.
    Tan, X., Wongmaneerung, R., and McCallum, R.W., Ferroelectric and magnetic properties of PbFe2/3W1/3O3-based multiferroic compounds with cation order, J. Appl. Phys., 2007, vol. 102, paper 104 114.Google Scholar
  14. 14.
    Rusakov, V.S., Messbauerovskaya spektroskopiya lokal’no neodnorodnykh sistem (Mössbauer Spectroscopy of Locally Inhomogeneous Systems), Almaty: OPNI IYaF NYaTs RK, 2000.Google Scholar
  15. 15.
    Raevsky, I.P., Sarychev, D.A., Bryugeman, S.A., et al., A study of cation ordering and magnetic phase transitions in ternary Fe-containing perovskite oxides by Mössbauer spectroscopy. Crystallogr. Rep., 2002, vol. 47, no. 6, pp. 1007–1011.CrossRefGoogle Scholar
  16. 16.
    Jonscher, A.K., Dielectric Relaxation in Solids, London: Chelsea Dielectric, 1983.Google Scholar
  17. 17.
    Kang, B.S., Choi, S.K., and Park, C.H., Diffuse dielectric anomaly in perovskite-type ferroelectric oxides in the temperature range of 400–700°C, J. Appl. Phys., 2003, vol. 84, no. 3, pp. 1904–1911.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • A. F. Koroleva
    • 1
  • A. A. Bush
    • 1
  • K. E. Kamentsev
    • 1
  • V. Ya. Shkuratov
    • 1
  • S. A. Ivanov
    • 2
    • 3
  • V. M. Cherepanov
    • 4
  • S. Shafeie
    • 3
  1. 1.Moscow Technological University (Moscow Institute of Radio Engineering, Electronics, and Automation)MoscowRussia
  2. 2.Karpov Institute of Physical Chemistry (Russian State Scientific Center)MoscowRussia
  3. 3.Uppsala UniversityUppsalaSweden
  4. 4.Kurchatov Institute National Research CentreMoscowRussia

Personalised recommendations