Inorganic Materials

, Volume 54, Issue 3, pp 305–314 | Cite as

Structural, Morphological, and Resorption Properties of Carbonate Hydroxyapatite Prepared in the Presence of Glycine



Carbonate-containing hydroxyapatite has been synthesized from prototype human synovial fluid in the presence of glycine. The resultant powders have been shown to contain 75 to 80 wt % the amino acid. If the model solution contains less than 0.08 mol/L of glycine, the latter influences neither the composition of the solid phase nor the size of the forming crystallites, but changes the degree of their crystallinity and the specific surface area of the material. At high amino acid concentrations, we observe the formation of poorly crystallized composites consisting of smaller nanocrystallites. The dissolution of the samples in a 0.9% NaCl solution has been shown to be a two-step process. The highest solubility under weakly acidic conditions has been demonstrated by the precipitates containing the largest amount of the amino acid.


biocompatible materials composites carbonate hydroxyapatite glycine resorption specific surface area crystallization 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Zelichenko, E.A., Development of protective biocompatible ceramic and polymer coatings on titanium surfaces, Extended Abstract of Cand. Sci. (Eng.) Dissertation, Seversk, 2011.Google Scholar
  2. 2.
    Karyakina, E.V. and Persova, E.A., Distinctive features of bone tissue remodeling in the case of inflammatory and degenerative hip joint diseases, Saratovsk. Nauchno-Med. Zh., 2009, vol. 5, no. 2, pp. 227–230.Google Scholar
  3. 3.
    Barinov, S.M., Biokeramika na osnove fosfatov kal’tsiya (Calcium Phosphate-Based Bioceramics), Moscow: Nauka, 2005.Google Scholar
  4. 4.
    Golovanova, O.A., Biomineralogy of urinary, gallbladder, tooth, and salivary stones from the human body, Doctoral (Geol.–Mineral.) Dissertation, Tomsk, 2009.Google Scholar
  5. 5.
    Veresov, A.G., Putlyaev, V.I., and Tret’yakov, Yu.D., Chemistry of calcium phosphate-based inorganic materials, Ross. Khim. Zh., 2004, vol. 48, no. 4, pp. 52–63.Google Scholar
  6. 6.
    Green, D.W., Goto, T.K., Kim, K.S., and Jung, H.S., Calcifying tissue regeneration via biomimetic materials chemistry, J. R. Soc., Interface, 2014, no. 11, pp. 1–11.CrossRefGoogle Scholar
  7. 7.
    Gabuda, S.P., Gaidash, A.A., Drebushchak, V.A., and Kozlova, S.G., Physical properties and structure of bound water in collagen-type fibrillar proteins as studied by scanning calorimetry, JETP Lett., 2005, vol. 82, no. 9, pp. 613–616.CrossRefGoogle Scholar
  8. 8.
    Lesnyak, O.M. and Benevolenskaya, L.I., Osteoporoz: klinicheskie rekomendatsii (Osteoporosis: Clinical Recommendations), Moscow: GEOTAR-Media, 2009, 2nd ed.Google Scholar
  9. 9.
    Torbenko, V.P. and Kasavina, B.S., Funktsional’naya biokhimiya kostnoi tkani (Functional Biochemistry of Bone Tissue), Moscow: Meditsina, 1977.Google Scholar
  10. 10.
    Advanced Topics on Crystal Growth, Ferreira, S.O., Ed., Moscow: InTech, 2013.Google Scholar
  11. 11.
    Almora-Barrios, N., Austen, K.F., and Leeuw, N.H., Density functional theory study of the binding of glycine, proline, and hydroxyproline to the hydroxyapatite (0001) and (0110) surfaces, Langmuir, 2009, vol. 25, no. 9, pp. 5018–5025.CrossRefGoogle Scholar
  12. 12.
    Rimola, A., Corno, M., Zicovich-Wilson, C.M., and Ugliengo, P., Ab initio modeling of protein/biomaterial interactions: competitive adsorption between glycine and water onto hydroxyapatite surfaces, Phys. Chem. Chem. Phys., 2009, vol. 11, no. 40, pp. 9005–9007.CrossRefGoogle Scholar
  13. 13.
    Chikanova, E.S., Osennyaya, A.A., and Golovanova, O.A., Adsorption of amino acids on brushite, Vestn. Omsk. Univ., 2014, no. 4, pp. 69–75.Google Scholar
  14. 14.
    Chang, M.K., Raggatt, L.J., Alexander, K.A., Kuliwaba, J.S., Fazzalari, N.L., Schroder, K., Maylin, E.R., Ripoll, V.M., Hume, D.A., and Pettit, A.R., Osteal tissue macrophages are intercalated throughout human and mouse bone lining tissues and regulate osteoblast function in vitro and in vivo, J. Immunol., 2008, vol. 181, no. 2, pp. 1232–1244.CrossRefGoogle Scholar
  15. 15.
    Thula, T.T., Rodriguez, D.E., Lee, M.H., Pendi, L., Podschun, J., and Gower, L.B., In vitro mineralization of dense collagen substrates a biomimetic approach toward the development of bone-graft materials, Acta Bio, 2011, vol. 7, no. 8, pp. 3158–3169.CrossRefGoogle Scholar
  16. 16.
    Golovanova, O.A., Lemesheva (Gerk), S.A., and Izmailov, R.R., RF Patent 2 496 150, 2013.Google Scholar
  17. 17.
    GOST (State Standard) 18309-72: Potable Water. A Polyphosphate Determination Method, 1972.Google Scholar
  18. 18.
    Gerk, S.A., Golovanova, O.A., and Sharkeev, Yu.P., Synthesis of a two-phase nanopowder from prototype human synovial fluid and the use of the nanopowder for the preparation of coatings on titanium plates, Inorg. Mater., 2016, vol. 52, no. 9, pp. 955–961.CrossRefGoogle Scholar
  19. 19.
    Barinov, S.M., Calcium phosphate-based ceramic and composite materials for medical applications, Usp. Khim., 2010, vol. 79, no. 1, pp. 15–32.CrossRefGoogle Scholar
  20. 20.
    Safronova, T.V. and Putlyaev, V.I., Medical inorganic materials research in Russia: calcium phosphate materials, Nanosist.: Fiz., Khim., Mat., 2013, vol. 4, no. 1, pp. 24–27.Google Scholar
  21. 21.
    Klimashina, E.S., Synthesis, structure, and properties of carbonate-substituted hydroxyapatites for resorbable biomaterials, Cand. Sci. (Chem.) Dissertation, Moscow, 2011.Google Scholar
  22. 22.
    Izmailov, R.R. and Golovanova, O.A., Bioresorbability of granulated composite based on carbonate hydroxyapatite and gelatin in media differing in pH, Vestn. Omsk. Univ., 2015, no. 2, pp. 61–65.Google Scholar
  23. 23.
    Tavafoghi, J.M., Yao, G., and Cerruti, M., The importance of amino acid interactions in the crystallization of hydroxyapatite, J. R. Soc., Interface, 2013, no. 10, pp. 1–14.Google Scholar
  24. 24.
    Elliott, J.C., Structure and Chemistry of the Apatites and Other Calcium Orthophosphates, Amsterdam: Elsevier, 1994.Google Scholar
  25. 25.
    Mendes, L.C., Ribeiro, G.L., and Marques, R.C., In situ hydroxyapatite synthesis: influence of collagen on its structural and morphological characteristic, Mater. Sci. Appl., 1996, no. 3, pp. 580–586.Google Scholar
  26. 26.
    Neyvis, A.B., A computational investigation of the interaction of the collagen molecule with hydroxyapatite, PhD Thesis, London, 2011.Google Scholar
  27. 27.
    Gagnon, P., Frost, R., Tunón, P., and Ogawa, T., Ceramic hydroxyapatite—a new dimension in chromatography of biological molecules, US/EG Bull., 1996, no. 2156, pp. 1–4.Google Scholar
  28. 28.
    Goloshchapov, D.L., Kashkarov, V.M., Rumyantseva, N.A., Seredin, P.V., Len’shin, A.S., Agapov, B.L., and Domashevskaya, E.P., Preparation of nanocrystalline hydroxyapatite by chemical precipitation using a biogenous calcium precursor, Kondens. Sredy Mezhfazn. Granitsy, 2011, vol. 13, no. 4, pp. 427–441.Google Scholar
  29. 29.
    Selifanova, E., Chepnova, R.K., and Koblova, O.E., Thermogravimetric study of L alpha amino acids, Izv. Saratovsk. Univ., Ser. Khim., Biol., Ekol., 2008, vol. 8, no. 2, pp. 23–28.Google Scholar
  30. 30.
    Starikova, V.V. and Rudchenko, S.O., Optimization of the properties of a hydroxyapatite–chitosan composite by varying its composition and heat treatment conditions, Vestn. Khar’kovsk. Univ., 2010, no. 14, pp. 35–39.Google Scholar
  31. 31.
    Badelin, V.G., Tyunina, E.Yu., and Mezhevoi, I.N., Thermogravimetric study of amino acids and aliphatic peptides, Zhidk. Krist. Ikh Praktich. Ispol’zovanie, 2014, vol. 14, no. 3, pp. 43–52.Google Scholar
  32. 32.
    Sarnatskaya, V.V., Yushko, L.A., Korneeva, L.N., Sakhno, L.A., Maslennyi, V.N., Snezhkova, E.A., Mikhalovskii, S.V., and Nikolaev, V.G., Surface biolization of highly efficient carbon adsorbents by human serum albumin conformers, Effer. Terapiya, 2005, vol. 11, pp. 10–20.Google Scholar
  33. 33.
    Petrakova, N.V., Effect of hydroxyapatite nanopowder synthesis and sintering conditions on the microstructure and properties of ceramics, Cand. Sci. (Eng.) Dissertation, Moscow, 2014.Google Scholar
  34. 34.
    Zakharov, N.A., Klyuev, V.A., Sentsov, M.Yu., and Toporov, Yu.P., Thermally stimulated currents in biocompatible calcium hydroxyapatite, Zh. Tekh. Fiz., 2014, vol. 82, no. 4, pp. 153–155.Google Scholar
  35. 35.
    Solonenko, A.P. and Golovanova, O.A., Glutamic acid adsorption on brushite, Khim. Interes. Ustoich. Razvit., 2004, vol. 21, no. 2, pp. 227–233.Google Scholar
  36. 36.
    Losev, E.A., Crystalline phases forming in glycine–carboxylic acid and serine–carboxylic acid systems, Cand. Sci. (Chem.) Dissertation, Novosibirsk, 2014.Google Scholar
  37. 37.
    Cao, G., Nanostructures and Nanomaterials: Synthesis, Properties and Application, London: Imperial College, 2004, 2nd ed.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • S. A. Gerk
    • 1
  • O. A. Golovanova
    • 1
  • V. N. Odazhiu
    • 1
  1. 1.Dostoevsky State UniversityOmskRussia

Personalised recommendations