Skip to main content
Log in

Vibrational Relaxation in the Solid NaNO3–NaClO4, NaNO3–NaNO2, and Na2CO3–Na2SO4 Binary Systems

  • Published:
Inorganic Materials Aims and scope

Abstract

Molecular relaxation processes in the solid binary systems NaNO3–NaClO4, Na2CO3–Na2SO4, and NaNO3–NaNO2 have been studied by Raman spectroscopy. It has been shown that the relaxation time of the ν1(A) vibrational mode of the NO -3 and CO 2-3 anions in the binary systems is shorter than that in individual (nitrate or carbonate) crystals. The increase in the relaxation rate can be accounted for by an additional mechanism for the relaxation of excited vibrational states of the anions in the binary systems. The mechanism involves the excitation of vibrations in a different anion (ClO -4 , SO 2-4 or NO -2 ) and the “generation” of a lattice phonon. This relaxation mechanism is possible when the difference in frequency between the vibrational modes involved corresponds to a region with a sufficiently high density of states in the phonon spectrum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Voronko, Yu.K., Sobol, A.A., and Shukshin, V.E., Monoclinic–tetragonal phase transition in zirconium and hafnium dioxides: a high-temperature Raman scattering investigation, Phys. Solid State, 2007, vol. 49, no. 10, pp. 1963–1968.

    Article  CAS  Google Scholar 

  2. Voronko, Yu.K., Sobol, A.A., Shukshin, V.E., and Gerasimov, Ya.V., Structure and phase transitions of rare-earth pyrosilicates studied by Raman spectroscopy, Inorg. Mater., 2015, vol. 51, no. 10, pp. 1039–1046.

    Article  CAS  Google Scholar 

  3. Gorelik, V.S. and Sverbil’, P.P., Raman scattering by longitudinal and transverse optical vibrations in lithium niobate single crystals, Inorg. Mater., 2015, vol. 51, no. 11, pp. 1104–1110.

    Article  CAS  Google Scholar 

  4. Denisova, L.T., Irtyugo, L.A., Kargin, Yu.F., Denisov, V.M., Beletskii, V.V., and Shubin, A.A., High-temperature heat capacity and vibrational spectra of Eu2Sn2O7, Inorg. Mater., 2016, vol. 52, no. 8, pp. 811–814.

    Article  CAS  Google Scholar 

  5. Sidorov, N.V., Teplyakova, N.A., Yanichev, A.A., Palatnikov, M.N., Makarova, O.V., Aleshina, L.A., and Kadetova, A.V., Structure and optical properties of LiNbO3:ZnO (3.43–5.84 mol %) crystals, Inorg. Mater., 2017, vol. 53, no. 5, pp. 489–495.

    Article  CAS  Google Scholar 

  6. Buzanov, O.A., Voronova, M.I., Zabelina, E.V., Kozlova, A.P., Kozlova, N.S., Skryleva, E.A., Spasskii, D.A., and Shcherbachev, K.D., Optical properties, defects, and composition of La3Ga5.5Ta0.5O14 crystals, Inorg. Mater., 2017, vol. 53, no. 5, pp. 502–509.

    Article  CAS  Google Scholar 

  7. Rakov, A.V., Rotational Brownian motion of molecules of substances in a condensed state studied by Raman and infrared absorption spectroscopy, Tr. Fiz. Inst. im. P. N. Lebedeva, Akad. Nauk SSSR, 1964, vol. 27, pp. 111–149.

    CAS  Google Scholar 

  8. Valiev, K.A. and Ivanov, E.N., Rotational Brownian motion, Usp. Fiz. Nauk, 1973, vol. 109, no. 1, pp. 31–64.

    Article  CAS  Google Scholar 

  9. Pogorelov, V.E., Lizengevich, A.I., Kondilenko, I.I., and Buyan, G.P., Vibrational relaxation in condensed media, Usp. Fiz. Nauk, 1979, vol. 127, no. 4, pp. 683–704.

    Article  CAS  Google Scholar 

  10. Kirillov, S.A., Vibrational spectroscopy in studies of the dynamics of ionic melts, Dinamicheskie svoistva molekul i kondensirovannykh sistem (Dynamic Properties of Molecules and Condensed Systems), Lazarev, A.N., Ed., Leningrad: Nauka, 1988, pp. 190–227.

  11. Oxtoby, D.W., Hydrodynamic theory of vibrations dephasing in liquids, J. Chem. Phys., 1978, vol. 70, no. 6, pp. 2605–2610.

    Article  Google Scholar 

  12. Valiev, K.A., On the theory of molecular vibration energy dissipation processes in liquids, Zh. Eksp. Teor. Fiz., 1961, vol. 40, no. 6, pp. 1832–1837.

    CAS  Google Scholar 

  13. Valiev, K.A., On the theory of the linewidth in vibrational and Raman spectra of molecules in dipolar liquids, Opt. Spektrosk., 1961, vol. 11, no. 4, pp. 465–470.

    CAS  Google Scholar 

  14. Sarka, K. and Kirillov, S.A., Ion–dipole interactioninduced line broadening in vibrational spectra of liquids, Ukr. Fiz. Zh. (Russ. Ed.), 1981, vol. 26, no. 7, pp. 1118–1125.

    CAS  Google Scholar 

  15. Ivanov, M.A., Kvashina, L.B., and Krivoglaz, M.A., Spectral distribution of local vibrations, Fiz. Tverd. Tela (Leningrad), 1965, vol. 7, no. 7, pp. 2047–2057.

    CAS  Google Scholar 

  16. Gafurov, M.M. and Aliev, A.R., Mechanism of vibrational excitation relaxation in nitrate crystals and melts, Rasplavy, 2000, no. 2, pp. 41–46.

    Google Scholar 

  17. Aliev, A.R. and Gafurov, M.M., Vibrational relaxation in binary salt systems, Russ. J. Phys. Chem. A, 2001, vol. 75, no. 3, pp. 418–421.

    Google Scholar 

  18. Aliev, A.R., Gafurov, M.M., and Akhmedov, I.R., Intermolecular phonon decay mechanism of vibrational relaxation in binary salt systems, Chem. Phys. Lett., 2002, vol. 359, nos. 3–4, pp. 262–269. − NO3

    Article  CAS  Google Scholar 

  19. Aliev, A.R., Akhmedov, I.R., Kakagasanov, M.G., Aliev, Z.A., Gafurov, M.M., Rabadanov, K.Sh., and Amirov, A.M., Inelastic intermolecular exchange of vibrational quanta and relaxation of vibrationally excited states in binary solid systems, Phys. Solid State, 2017, vol. 59, no. 4. pp. 752—757.

  20. Mukhopadhyay, S. and Jacob, K.T., Gradient solid electrolytes for thermodynamic measurements: system Na2CO3–Na2SO4, Metall. Mater. Trans. A, 1994, vol. 25, no. 1, pp. 173–181.

    Article  Google Scholar 

  21. Glazov, V.I., Dukhanin, G.P., and Dkhaibe, M.Kh., Physicochemical properties of a NaNO2–KNO3 nitrite–nitrate heat transfer salt, Izv. Volgogradsk. Gos. Tekh. Univ., 2006, no. 1, pp. 94–99.

    Google Scholar 

  22. Maina, N.S. and Solomon, E., Salting out effect of electrolyte solutions in the extraction of tantalum and niobium using aqueous biphase system, Niger. J. Basic Appl. Sci., 2014, vol. 22, nos. 1–2, pp. 5–9.

    Article  Google Scholar 

  23. Merzlyakov, K.S. and Uglev, N.P., NaNO2–KNO3 phase diagram, Vestn. Permsk. Nats. Issled. Politekh. Univ., 2014, no. 4, pp. 68–75.

    Google Scholar 

  24. Ikechukwu, A.S., Obioma, E., and Ugochukwu, N.H., Studies on corrosion characteristics of carbon steel exposed to Na2CO3, Na2SO4, and NaCl solutions of different concentrations, Int. J. Eng. Sci., 2014, vol. 3, no. 10, pp. 48–60.

    Google Scholar 

  25. Tonkov, E.Yu., Fazovye diagrammy soedinenii pri vysokom davlenii (High-Pressure Phase Diagrams of Compounds), Moscow: Nauka, 1983.

    Google Scholar 

  26. Belomestnykh, V.N. and Botaki, A.A., Polymorphism of monovalent metal and ammonium nitrates according to acoustic data, Fiz. Tverd. Tela (Leningrad), 1992, vol. 34, no. 1, pp. 261–270.

    CAS  Google Scholar 

  27. Khimicheskaya entsiklopediya (Chemical Encyclopedia), Moscow: Sovetskaya Entsiklopediya, 1992, vol. 3, pp. 182–185.

  28. Korabel'nikov, D.V. and Zhuravlev, Yu.N., Theoretical study of the thermodynamic properties of lithium, sodium, and potassium nitrates, Phys. Solid State, 2013, vol. 55, no. 8. pp. 1765—1772.

  29. Prisyazhnyi, V.D. and Snezhkov, V.I., Raman spectroscopy study of exchange reactions in molten alkali metal nitrates and perchlorates, Ukr. Khim. Zh. (Russ. Ed.), 1981, vol. 47, no. 3, pp. 230–234.

    CAS  Google Scholar 

  30. Dessureault, Y., Sangster, J., and Pelton, A.D., Coupled phase diagram/thermodynamic analysis of the nine common-ion binary systems involving the carbonates and sulfates of lithium, sodium, and potassium, J. Electrochem. Soc., 1990, vol. 137, no. 9, pp. 2941–2950.

    Article  CAS  Google Scholar 

  31. Lindberg, D., Backman, R., and Chartrand, P., Thermodynamic evaluation and optimization of the (Na2CO3 + Na2SO4 + Na2S + K2CO3 + K2SO4 + K2S) system, J. Chem. Thermodyn., 2007, vol. 39, pp. 942–960.

    Article  CAS  Google Scholar 

  32. Bale, C.W. and Pelton, A.D., Coupled phase diagram and thermodynamic analysis of the 18 binary systems formed among Li2CO3, K2CO3, Na2CO3, LiOH, KOH, NaOH, Li2SO4, K2SO4 and Na2SO4, CALPHAD: Comput. Coupling Phase Diagrams Thermochem., 1982, vol. 6, no. 4, pp. 255–278.

    Article  CAS  Google Scholar 

  33. Gorelik, V.S., Pyatyshev, A.Yu., and Krylov, A.S., Raman scattering in sodium nitrite crystals near the phase transition, Phys. Solid State, 2016, vol. 58, no. 1, pp. 170–176.

    Article  CAS  Google Scholar 

  34. Drobchik, T.Yu., Khaliullin, R.Sh., and Nevostruev, V.A., Cocrystallization of potassium perchlorate with potassium periodate, iodate, nitrite, nitrate, and sulfate, Polzunovsk. Vestn., 2006, no. 2, pp. 92–94.

    Google Scholar 

  35. Brooker, M.H. and Papatheodorou, G.N., Vibrational spectroscopy of molten salt and related glasses and vapors, Adv. Molten Salt Chem., 1983, vol. 5, pp. 26–184.

    CAS  Google Scholar 

  36. Kohlrausch, K.W.F., Raman Specktren, Leipzig: Becker, 1943.

    Google Scholar 

  37. Sverdlov, L.M., Kovner, M.A., and Krainov, E.P., Kolebatel’nye spektry mnogoatomnykh molekul (Vibrational Spectra of Polyatomic Molecules), Moscow: Nauka, 1970.

    Google Scholar 

  38. The Aldrich Library of Infrared Spectra, Pouchert, C.J., Ed., Aldrich Chemical Company Inc., 1978, 2nd ed., p. 292.

  39. Belomestnykh, V.N. and Tesleva, E.P., Orientational order–disorder polymorphic transformations: II. Nitrogen-containing ionic–molecular sodium crystals, Izv. Tomsk. Politekh. Univ., 2004, vol. 307, no. 6, pp. 11–17.

    Google Scholar 

  40. Korabel’nikov, D.V. and Zhuravlev, Yu.N., Ab initio investigations of the elastic properties of chlorates and perchlorates, Phys. Solid State, 2016, vol. 58, no. 6, pp. 1166–1171.

    Article  Google Scholar 

  41. Golovko, O.V., Electronic structure, chemical bonding, and physicochemical properties of alkali metal sulfates, Extended Abstract of Cand. Sci. (Phys.–Math.) Dissertation, Kemerovo: Kemerovsk. Gos. Univ., 2009.

    Google Scholar 

  42. James, D.W. and Leong, W.H., Vibrational spectra of single crystals of group I nitrates, J. Chem. Phys., 1968, vol. 49, pp. 5089–5096.

    Article  CAS  Google Scholar 

  43. Leong, W.H. and James, D.W., Vibrational spectra of anhydrous lithium perchlorate in crystalline and molten states, Austr. J. Chem., 1969, vol. 22, pp. 499–503.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. R. Aliev.

Additional information

Original Russian Text © A.R. Aliev, I.R. Akhmedov, M.G. Kakagasanov, Z.A. Aliev, M.M. Gafurov, K.Sh. Rabadanov, A.M. Amirov, 2018, published in Neorganicheskie Materialy, 2018, Vol. 54, No. 3, pp. 284–290.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aliev, A.R., Akhmedov, I.R., Kakagasanov, M.G. et al. Vibrational Relaxation in the Solid NaNO3–NaClO4, NaNO3–NaNO2, and Na2CO3–Na2SO4 Binary Systems. Inorg Mater 54, 261–267 (2018). https://doi.org/10.1134/S0020168518030020

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168518030020

Keywords

Navigation