Advertisement

Inorganic Materials

, Volume 54, Issue 3, pp 261–267 | Cite as

Vibrational Relaxation in the Solid NaNO3–NaClO4, NaNO3–NaNO2, and Na2CO3–Na2SO4 Binary Systems

  • A. R. Aliev
  • I. R. Akhmedov
  • M. G. Kakagasanov
  • Z. A. Aliev
  • M. M. Gafurov
  • K. Sh. Rabadanov
  • A. M. Amirov
Article

Abstract

Molecular relaxation processes in the solid binary systems NaNO3–NaClO4, Na2CO3–Na2SO4, and NaNO3–NaNO2 have been studied by Raman spectroscopy. It has been shown that the relaxation time of the ν1(A) vibrational mode of the NO 3 - and CO 3 2- anions in the binary systems is shorter than that in individual (nitrate or carbonate) crystals. The increase in the relaxation rate can be accounted for by an additional mechanism for the relaxation of excited vibrational states of the anions in the binary systems. The mechanism involves the excitation of vibrations in a different anion (ClO 4 - , SO 4 2- or NO 2 - ) and the “generation” of a lattice phonon. This relaxation mechanism is possible when the difference in frequency between the vibrational modes involved corresponds to a region with a sufficiently high density of states in the phonon spectrum.

Keywords

binary systems Raman scattering molecular spectroscopy vibrational relaxation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Voronko, Yu.K., Sobol, A.A., and Shukshin, V.E., Monoclinic–tetragonal phase transition in zirconium and hafnium dioxides: a high-temperature Raman scattering investigation, Phys. Solid State, 2007, vol. 49, no. 10, pp. 1963–1968.CrossRefGoogle Scholar
  2. 2.
    Voronko, Yu.K., Sobol, A.A., Shukshin, V.E., and Gerasimov, Ya.V., Structure and phase transitions of rare-earth pyrosilicates studied by Raman spectroscopy, Inorg. Mater., 2015, vol. 51, no. 10, pp. 1039–1046.CrossRefGoogle Scholar
  3. 3.
    Gorelik, V.S. and Sverbil’, P.P., Raman scattering by longitudinal and transverse optical vibrations in lithium niobate single crystals, Inorg. Mater., 2015, vol. 51, no. 11, pp. 1104–1110.CrossRefGoogle Scholar
  4. 4.
    Denisova, L.T., Irtyugo, L.A., Kargin, Yu.F., Denisov, V.M., Beletskii, V.V., and Shubin, A.A., High-temperature heat capacity and vibrational spectra of Eu2Sn2O7, Inorg. Mater., 2016, vol. 52, no. 8, pp. 811–814.CrossRefGoogle Scholar
  5. 5.
    Sidorov, N.V., Teplyakova, N.A., Yanichev, A.A., Palatnikov, M.N., Makarova, O.V., Aleshina, L.A., and Kadetova, A.V., Structure and optical properties of LiNbO3:ZnO (3.43–5.84 mol %) crystals, Inorg. Mater., 2017, vol. 53, no. 5, pp. 489–495.CrossRefGoogle Scholar
  6. 6.
    Buzanov, O.A., Voronova, M.I., Zabelina, E.V., Kozlova, A.P., Kozlova, N.S., Skryleva, E.A., Spasskii, D.A., and Shcherbachev, K.D., Optical properties, defects, and composition of La3Ga5.5Ta0.5O14 crystals, Inorg. Mater., 2017, vol. 53, no. 5, pp. 502–509.CrossRefGoogle Scholar
  7. 7.
    Rakov, A.V., Rotational Brownian motion of molecules of substances in a condensed state studied by Raman and infrared absorption spectroscopy, Tr. Fiz. Inst. im. P. N. Lebedeva, Akad. Nauk SSSR, 1964, vol. 27, pp. 111–149.Google Scholar
  8. 8.
    Valiev, K.A. and Ivanov, E.N., Rotational Brownian motion, Usp. Fiz. Nauk, 1973, vol. 109, no. 1, pp. 31–64.CrossRefGoogle Scholar
  9. 9.
    Pogorelov, V.E., Lizengevich, A.I., Kondilenko, I.I., and Buyan, G.P., Vibrational relaxation in condensed media, Usp. Fiz. Nauk, 1979, vol. 127, no. 4, pp. 683–704.CrossRefGoogle Scholar
  10. 10.
    Kirillov, S.A., Vibrational spectroscopy in studies of the dynamics of ionic melts, Dinamicheskie svoistva molekul i kondensirovannykh sistem (Dynamic Properties of Molecules and Condensed Systems), Lazarev, A.N., Ed., Leningrad: Nauka, 1988, pp. 190–227.Google Scholar
  11. 11.
    Oxtoby, D.W., Hydrodynamic theory of vibrations dephasing in liquids, J. Chem. Phys., 1978, vol. 70, no. 6, pp. 2605–2610.CrossRefGoogle Scholar
  12. 12.
    Valiev, K.A., On the theory of molecular vibration energy dissipation processes in liquids, Zh. Eksp. Teor. Fiz., 1961, vol. 40, no. 6, pp. 1832–1837.Google Scholar
  13. 13.
    Valiev, K.A., On the theory of the linewidth in vibrational and Raman spectra of molecules in dipolar liquids, Opt. Spektrosk., 1961, vol. 11, no. 4, pp. 465–470.Google Scholar
  14. 14.
    Sarka, K. and Kirillov, S.A., Ion–dipole interactioninduced line broadening in vibrational spectra of liquids, Ukr. Fiz. Zh. (Russ. Ed.), 1981, vol. 26, no. 7, pp. 1118–1125.Google Scholar
  15. 15.
    Ivanov, M.A., Kvashina, L.B., and Krivoglaz, M.A., Spectral distribution of local vibrations, Fiz. Tverd. Tela (Leningrad), 1965, vol. 7, no. 7, pp. 2047–2057.Google Scholar
  16. 16.
    Gafurov, M.M. and Aliev, A.R., Mechanism of vibrational excitation relaxation in nitrate crystals and melts, Rasplavy, 2000, no. 2, pp. 41–46.Google Scholar
  17. 17.
    Aliev, A.R. and Gafurov, M.M., Vibrational relaxation in binary salt systems, Russ. J. Phys. Chem. A, 2001, vol. 75, no. 3, pp. 418–421.Google Scholar
  18. 18.
    Aliev, A.R., Gafurov, M.M., and Akhmedov, I.R., Intermolecular phonon decay mechanism of vibrational relaxation in binary salt systems, Chem. Phys. Lett., 2002, vol. 359, nos. 3–4, pp. 262–269. − NO3CrossRefGoogle Scholar
  19. 19.
    Aliev, A.R., Akhmedov, I.R., Kakagasanov, M.G., Aliev, Z.A., Gafurov, M.M., Rabadanov, K.Sh., and Amirov, A.M., Inelastic intermolecular exchange of vibrational quanta and relaxation of vibrationally excited states in binary solid systems, Phys. Solid State, 2017, vol. 59, no. 4. pp. 752—757.Google Scholar
  20. 20.
    Mukhopadhyay, S. and Jacob, K.T., Gradient solid electrolytes for thermodynamic measurements: system Na2CO3–Na2SO4, Metall. Mater. Trans. A, 1994, vol. 25, no. 1, pp. 173–181.CrossRefGoogle Scholar
  21. 21.
    Glazov, V.I., Dukhanin, G.P., and Dkhaibe, M.Kh., Physicochemical properties of a NaNO2–KNO3 nitrite–nitrate heat transfer salt, Izv. Volgogradsk. Gos. Tekh. Univ., 2006, no. 1, pp. 94–99.Google Scholar
  22. 22.
    Maina, N.S. and Solomon, E., Salting out effect of electrolyte solutions in the extraction of tantalum and niobium using aqueous biphase system, Niger. J. Basic Appl. Sci., 2014, vol. 22, nos. 1–2, pp. 5–9.CrossRefGoogle Scholar
  23. 23.
    Merzlyakov, K.S. and Uglev, N.P., NaNO2–KNO3 phase diagram, Vestn. Permsk. Nats. Issled. Politekh. Univ., 2014, no. 4, pp. 68–75.Google Scholar
  24. 24.
    Ikechukwu, A.S., Obioma, E., and Ugochukwu, N.H., Studies on corrosion characteristics of carbon steel exposed to Na2CO3, Na2SO4, and NaCl solutions of different concentrations, Int. J. Eng. Sci., 2014, vol. 3, no. 10, pp. 48–60.Google Scholar
  25. 25.
    Tonkov, E.Yu., Fazovye diagrammy soedinenii pri vysokom davlenii (High-Pressure Phase Diagrams of Compounds), Moscow: Nauka, 1983.Google Scholar
  26. 26.
    Belomestnykh, V.N. and Botaki, A.A., Polymorphism of monovalent metal and ammonium nitrates according to acoustic data, Fiz. Tverd. Tela (Leningrad), 1992, vol. 34, no. 1, pp. 261–270.Google Scholar
  27. 27.
    Khimicheskaya entsiklopediya (Chemical Encyclopedia), Moscow: Sovetskaya Entsiklopediya, 1992, vol. 3, pp. 182–185.Google Scholar
  28. 28.
    Korabel'nikov, D.V. and Zhuravlev, Yu.N., Theoretical study of the thermodynamic properties of lithium, sodium, and potassium nitrates, Phys. Solid State, 2013, vol. 55, no. 8. pp. 1765—1772.Google Scholar
  29. 29.
    Prisyazhnyi, V.D. and Snezhkov, V.I., Raman spectroscopy study of exchange reactions in molten alkali metal nitrates and perchlorates, Ukr. Khim. Zh. (Russ. Ed.), 1981, vol. 47, no. 3, pp. 230–234.Google Scholar
  30. 30.
    Dessureault, Y., Sangster, J., and Pelton, A.D., Coupled phase diagram/thermodynamic analysis of the nine common-ion binary systems involving the carbonates and sulfates of lithium, sodium, and potassium, J. Electrochem. Soc., 1990, vol. 137, no. 9, pp. 2941–2950.CrossRefGoogle Scholar
  31. 31.
    Lindberg, D., Backman, R., and Chartrand, P., Thermodynamic evaluation and optimization of the (Na2CO3 + Na2SO4 + Na2S + K2CO3 + K2SO4 + K2S) system, J. Chem. Thermodyn., 2007, vol. 39, pp. 942–960.CrossRefGoogle Scholar
  32. 32.
    Bale, C.W. and Pelton, A.D., Coupled phase diagram and thermodynamic analysis of the 18 binary systems formed among Li2CO3, K2CO3, Na2CO3, LiOH, KOH, NaOH, Li2SO4, K2SO4 and Na2SO4, CALPHAD: Comput. Coupling Phase Diagrams Thermochem., 1982, vol. 6, no. 4, pp. 255–278.CrossRefGoogle Scholar
  33. 33.
    Gorelik, V.S., Pyatyshev, A.Yu., and Krylov, A.S., Raman scattering in sodium nitrite crystals near the phase transition, Phys. Solid State, 2016, vol. 58, no. 1, pp. 170–176.CrossRefGoogle Scholar
  34. 34.
    Drobchik, T.Yu., Khaliullin, R.Sh., and Nevostruev, V.A., Cocrystallization of potassium perchlorate with potassium periodate, iodate, nitrite, nitrate, and sulfate, Polzunovsk. Vestn., 2006, no. 2, pp. 92–94.Google Scholar
  35. 35.
    Brooker, M.H. and Papatheodorou, G.N., Vibrational spectroscopy of molten salt and related glasses and vapors, Adv. Molten Salt Chem., 1983, vol. 5, pp. 26–184.Google Scholar
  36. 36.
    Kohlrausch, K.W.F., Raman Specktren, Leipzig: Becker, 1943.Google Scholar
  37. 37.
    Sverdlov, L.M., Kovner, M.A., and Krainov, E.P., Kolebatel’nye spektry mnogoatomnykh molekul (Vibrational Spectra of Polyatomic Molecules), Moscow: Nauka, 1970.Google Scholar
  38. 38.
    The Aldrich Library of Infrared Spectra, Pouchert, C.J., Ed., Aldrich Chemical Company Inc., 1978, 2nd ed., p. 292.Google Scholar
  39. 39.
    Belomestnykh, V.N. and Tesleva, E.P., Orientational order–disorder polymorphic transformations: II. Nitrogen-containing ionic–molecular sodium crystals, Izv. Tomsk. Politekh. Univ., 2004, vol. 307, no. 6, pp. 11–17.Google Scholar
  40. 40.
    Korabel’nikov, D.V. and Zhuravlev, Yu.N., Ab initio investigations of the elastic properties of chlorates and perchlorates, Phys. Solid State, 2016, vol. 58, no. 6, pp. 1166–1171.CrossRefGoogle Scholar
  41. 41.
    Golovko, O.V., Electronic structure, chemical bonding, and physicochemical properties of alkali metal sulfates, Extended Abstract of Cand. Sci. (Phys.–Math.) Dissertation, Kemerovo: Kemerovsk. Gos. Univ., 2009.Google Scholar
  42. 42.
    James, D.W. and Leong, W.H., Vibrational spectra of single crystals of group I nitrates, J. Chem. Phys., 1968, vol. 49, pp. 5089–5096.CrossRefGoogle Scholar
  43. 43.
    Leong, W.H. and James, D.W., Vibrational spectra of anhydrous lithium perchlorate in crystalline and molten states, Austr. J. Chem., 1969, vol. 22, pp. 499–503.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • A. R. Aliev
    • 1
  • I. R. Akhmedov
    • 1
    • 2
  • M. G. Kakagasanov
    • 1
    • 2
  • Z. A. Aliev
    • 1
  • M. M. Gafurov
    • 1
    • 2
  • K. Sh. Rabadanov
    • 2
  • A. M. Amirov
    • 2
  1. 1.Amirkhanov Institute of Physics, Dagestan Scientific CenterRussian Academy of SciencesMakhachkalaRussia
  2. 2.Shared Analytical Facilities Center, Dagestan Scientific CenterRussian Academy of SciencesMakhachkalaRussia

Personalised recommendations