Skip to main content
Log in

Measurement of Material Deformation with Fiber Bragg Gratings (Summarization)

  • Mechanics of Materials: Strength, Lifetime, Safety
  • Published:
Inorganic Materials Aims and scope

Abstract

Fiber sensing elements based on Bragg gratings (FBG) are a prospective basis of sensors for detecting deformations in measuring systems, in particular, for integrated control of various structures. The possibility of their application in the structure of polymer composite material for aerospace construction elements is examined. The FBG operating principle is based on change in the period of the grating—the periodic structure of the refractive index of an optical fiber core. Change in the period can cause either thermal expansion or compression of an optical fiber. Therefore, to solve integrated control problems, one has to understand the cause of optical fiber deformation in the area of location of FBG—with change in mechanical loading applied to it or thermal operating conditions. Proposed approaches to the allowance for temperature change when measuring deformation with FBG are systemized and the results of works in this field are presented. Possible implementations of each approach are described. Measurement accuracy of deformation and temperature is determined. The structural scheme of sensing elements is described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kablov, E.N., The sixth technological shift, Nauka Zhizn, 2010, no. 4, pp. 2–7.

    Google Scholar 

  2. Gulyaev, I.N., Gunyaev, G.M., and Raskutin A.E., Polymer composite materials with the functions of adaptation and diagnostics of state, Aviats. Mater. Tekhnol., 2012, suppl., pp. 242–253.

    Google Scholar 

  3. Vasil’ev, S.A., Medvedkov, O.I., Korolev, I.G., Bojkov, A.S., Kurkov, A.S., and Dianov, E.M., Fibre gratings and their applications, Quantum Electron., 2005, vol. 35, no. 12, pp. 1085–1103.

    Article  Google Scholar 

  4. Takeda, N., Fiber optic sensor-based SHM technologies for aerospace applications in Japan, Proc. SPIE, 2008, no. 6933. doi 10.1117/12.776838

  5. Hill, K.O. and Meltz, G., Fiber Bragg grating technology fundamentals and overview, J. Lightwave Technol., 1997, vol. 15, pp. 1263–1276.

    Article  CAS  Google Scholar 

  6. Lawrence, C.M., Nelson, D.V., Udd, E., and Bennett, T., A fiber optic sensor for transverse strain measurement, Exp. Mech., 1999, vol. 39, no. 3, pp. 202–209.

    Article  Google Scholar 

  7. Leduc, D., Lecieux, Y., Morvan, P.-A., and Lupi, C., Architecture of optical fiber sensor for the simultaneous measurement of axial and radial strains, Smart Mater. Struct., 2013, vol. 22, p. 9. doi 10.1088/0964-1726/22/7/075002

    Article  Google Scholar 

  8. Kollar, L.P. and van Steenkiste, R.J., Calculation of the stresses and strains in embedded fiber optic sensors, J. Compos. Mater., 1998, vol. 32, pp. 1647–1679.

    Article  Google Scholar 

  9. Montanini, R. and D’Acquisto, L., Simultaneous measurement of temperature and strain in glass fiber/epoxy composites by embedded fiber optic sensors: I. Cure monitoring, Smart Mater. Struct., 2007, no. 16, pp. 1718–1726.

    Article  CAS  Google Scholar 

  10. Song, M.H., Lee, S.B., Choi, S.S., and Lee, B.H., Simultaneous measurement of temperature and strain using two fiber Bragg gratings embedded in a glass tube, Opt. Fiber Technol., 1997, no. 3, pp. 194–196.

    Article  Google Scholar 

  11. Mulle, M., Zitoune, R., Collombet, F., Olivier, P., and Grunevald, Y.H., Thermal expansion of carbon-epoxy laminates measured with embedded FBGS-Comparison with other experimental techniques and numerical simulation, Composites, Part A, 2007, no. 38, pp. 1414–1424.

    Article  Google Scholar 

  12. Tang, J.-L. and Wang, J.-N., Error analysis and measurement uncertainty for a fiber grating strain-temperature sensor, Sensors, 2010, no. 10, pp. 6582–6593.

    Article  Google Scholar 

  13. Latini, V., Striano, V., Coppola, G., and Rendina, I., Fiber optic sensors system for high temperature monitoring of aerospace structures, Proc. SPIE, 2007, vol. 6593. doi 10.1117/12.722269

  14. Jung, J., Nam, H., Lee, J.H., Park, N., and Lee, B., Simultaneous measurement of strain and temperature by use of a single-fiber Bragg grating and an erbiumdoped fiber amplifier, Appl. Opt., 1999, vol. 38, no. 13, pp. 2749–2751.

    Article  CAS  Google Scholar 

  15. Zhao, C.-L., Zhao, J., Jin, W., Ju, J., Cheng, L., and Huang, X., Simultaneous strain and temperature measurement using a highly birefringence fiber loop mirror and a long-period grating written in a photonic crystal fiber, Opt. Commun., 2009, vol. 282, pp. 4077–4080.

    Article  CAS  Google Scholar 

  16. Xu, M.G., Archambault, J.L., Reekie, L., and Dakin, J.P., Thermally-compensated bending gauge using surface mounted fiber gratings, Int. J. Optoelectron., 1994, vol. 9, pp. 281–283.

    Article  Google Scholar 

  17. Zhao, Y. and Zhao, M.G., Novel force sensor based on a couple of fiber Bragg gratings, Measurement, 2005, no. 38, pp. 30–33.

    Article  Google Scholar 

  18. Sheng, H.J., Liu, W.F., Lin, K.R., Bor, S.S., and Fu, M.Y., High-sensitivity temperature-independent differential pressure sensor using fiber Bragg gratings, Opt. Express., 2008, vol. 16, pp. 16013–16018.

    Article  CAS  Google Scholar 

  19. Jin, L., Zhang, W.G., Zhang, H., Liu, B., Zhao, H., Tu, Q.C., Kai, G.Y., and Dong, X.Y., An embedded FBG sensor for simultaneous measurement of stress and temperature, IEEE Photonics Tech. Lett., 2006, no. 18, pp. 154–156.

    Article  Google Scholar 

  20. Frazão, O., Melo, M., Marques, P.V.S., and Santos, J.L., Chirped Bragg grating fabricated in fused fibre taper for strain-temperature discrimination, Meas. Sci. Technol., 2005, no. 16, pp. 984–988.

    Article  Google Scholar 

  21. Xu, M.G., Dong, L., Reekie, L., Tucknott, J.A., and Cruz, J.L., Temperature-independent strain sensor using a chirped Bragg grating in a tapered optical fiber, Electron. Lett., 1995, vol. 31, no. 70, pp. 823–825.

    Article  Google Scholar 

  22. Kim, S., Kwon, J., Kim, S., and Lee, B., Temperatureindependent strain sensor using a chirped grating partially embedded in a glass tube, IEEE Photonics Technol. Lett., 2000, vol. 12, no. 6, pp. 678–680.

    Article  Google Scholar 

  23. Frazão, O., Marques, L., Marques, J.M., Baptista, J.M., and Santos, J.L., Simple sensing head geometry using fibre Bragg gratings for strain-temperature discrimination, Opt. Commun., 2007, vol. 279, pp. 68–71.

    Article  Google Scholar 

  24. James, S.W., Dockney, M.L., and Tatam, R.P., Simultaneous independent temperature and strain measurement using in-fibre Bragg grating sensors, Electron. Lett., 1996, vol. 32, no. 12, pp. 1133–1134.

    Article  Google Scholar 

  25. Zheng, S. and Zhang, X., Simultaneous measurement of pressure and temperature using a single fiber Bragg grating, Progress in Electromagnetics Research Symp., Hangzhou, 2005, pp. 420–423.

    Google Scholar 

  26. Tanaka, N., Okabe, Y., and Takeda, N., Temperaturecompensated strain measurement using fiber Bragg grating sensors embedded in composite laminates, Smart Mater. Struct., 2003, no. 12, pp. 940–946.

    Article  CAS  Google Scholar 

  27. Yoon, H.J., Costantini, D.M., Limberger, H.G., Salathe, R.P., Kim, C.G., and Michaud, V., In situ strain and temperature monitoring of adaptive composite materials, J. Intell. Mater. Syst. Struct., 2006, no. 17, pp. 1059–1067.

    Article  CAS  Google Scholar 

  28. Cavaleiro, P.M., Araújo, F.M., Ferreira, L.A., Santos, J.L., and Farahi, F., Simultaneous measurement of strain and temperature using Bragg gratings written in germanosilicate and boron-codoped germanosilicate fibers, IEEE Photonics Tech. Lett., 1999, vol. 11, no. 12, pp. 1635–1637.

    Article  Google Scholar 

  29. Liu, H.B., Liu, H.Y., Peng, G.D., and Chu, P.L., Strain and temperature sensor using a combination of polymer and silica fibre Bragg gratings, Opt. Commun., 2003, vol. 219, pp. 139–142.

    Article  CAS  Google Scholar 

  30. Frazão, O. and Santos, J.L., Simultaneous measurement of strain and temperature using a Bragg grating structure written in germanosilicate fibres, J. Opt. A: Pure Appl. Opt., 2004, no. 6, pp. 553–556.

    Article  Google Scholar 

  31. Guan, B.-O., Tam, H.-Y., Chan, H.L.W., Choy, C.-L., and Demokan, M.S., Discrimination between strain and temperature with a single fiber Bragg grating, Microwave Opt. Technol. Lett., 2002, vol. 33, no. 3, pp. 200–202.

    Article  Google Scholar 

  32. Guan, B.O., Tam, H.Y., Ho, S.L., Chung, W.H., and Dong, X.Y., Simultaneous strain and temperature measurement using a single fibre Bragg grating, Electron. Lett., 2000, vol. 36, pp. 1018–1019.

    Article  Google Scholar 

  33. Frazão, O., Lima, M.J.N., and Santos, J.L., Simultaneous measurement of strain and temperature using type I and type IIA fibre Bragg gratings, J. Opt. A: Pure Appl. Opt., 2003, no. 5, pp. 183–185.

    Article  Google Scholar 

  34. Shu, X., Zhao, D., Zhang, L., and Bennion, I., Use of dual-grating sensors formed by different types of fiber Bragg gratings for simultaneous temperature and strain measurements, Appl. Opt., 2004, vol. 43, no. 10, pp. 2006–2012.

    Article  Google Scholar 

  35. Pal, S., Sun, T., Grattan, K.T.V., Wade, S.A., Collins, S.F., Baxter, G.W., Dussardier, B., and Monnom, G., Nonlinear temperature dependence of Bragg gratings written in different fibres, optimised for sensor applications over a wide range of temperatures, Sens. Actuators, A, 2004, vol. 112, pp. 211–219.

    CAS  Google Scholar 

  36. Chehura, E., James, S.W., and Tatam, R.P., Temperature and strain discrimination using a single tilted fibre Bragg grating, Opt. Commun., 2007, no. 275, pp. 344–347.

    Article  CAS  Google Scholar 

  37. Kersey, A.D. and Patrick, H.J. US Patent 5945666, 1999.

  38. Srimannarayana, K., Shankar, M.S., Prasad Sai, R.L.N., Mohan, T.K.K., Ramakrishna, S., Srikanth, G., and Rao, S.R.P., Fiber Bragg grating and long period grating sensor for simultaneous measurement and discrimination of strain and temperature effects, Opt. Appl., 2008, vol. 38, no. 3, pp. 601–608.

    Google Scholar 

  39. Du, W.-C., Tao, X.-M., and Tam, H.-Y., Fiber Bragg grating cavity sensor for simultaneous measurement of strain and temperature, IEEE Photonics Technol. Lett., 1999, vol. 11, no. 1, pp. 105–107.

    Article  Google Scholar 

  40. Rao, Y.J., Ran, Z.L., Liao, X., and Deng, H.Y., Hybrid LPFG/MEFPI sensor for simultaneous measurement of high-temperature and strain, Opt. Express., 2007, vol. 15, pp. 936–941.

    Article  Google Scholar 

  41. Kang, H.K., Kang, D.H., Hong, C.S., and Kim, C.G., Simultaneous monitoring of strain and temperature during and after cure of unsymmetric composite laminate using fibre-optic sensors, Smart Mater. Struct., 2003, no. 12, pp. 29–35.

    Article  Google Scholar 

  42. Singh, H. and Sirkis, J.S., Temperature and strain measurement by combining ILFE and Bragg grating optical fiber sensors, Exp. Mech., 1997, no. 37, pp. 414–419.

    Article  Google Scholar 

  43. Chen, G., Liu, L., Jia, H., Yu, J., Xu, L., and Wang, W., Simultaneous strain and temperature measurements with fiber Bragg grating written in novel Hi-Bi optical fiber, IEEE Photonics Technol. Lett., 2004, vol. 16, no. 1, pp. 221–223.

    Article  Google Scholar 

  44. Frazão, O., Carvalho, J.P., Ferreira, L.A., Araújo, F.M., and Santos, J.L., Discrimination of strain and temperature using Bragg gratings in microstructured and standard optical fibres, Meas. Sci. Technol., 2005, no. 16, pp. 2109–2113.

    Article  Google Scholar 

  45. Luyckx, G., Voet, E., Geernaert, T., Chah, K., Nasilowski, T., De Waele, W., van Paepegem, W., Becker, M., Bartelt, H., Urbanczyk, W., Wojcik, J., Degrieck, J., Berghmans, F., and Thienpont, H., Response of FBGs in microstructured and bow tie fibers embedded in laminated composite, IEEE Photonics Tech. Lett., 2009, no. 21, pp. 1290–1292.

    Article  Google Scholar 

  46. Silva, S.F.O., Frazão, O., Santos, J.L., Araújo, F.M., and Ferreira, L.A., Discrimination of temperature, strain, and transverse load by using fiber Bragg gratings in a twisted configuration, IEEE Sens. J., 2006, vol. 6, no. 6, pp. 1609–1613.

    Google Scholar 

  47. Lin, C.M., Liu, Y.C., Liu, W.F., Fu, M.Y., Sheng, H.J., Bor, S.S., and Tien, C.L., High-sensitivity simultaneous pressure and temperature sensor using a superstructure fiber grating, IEEE Sens. J., 2006, no. 6, pp. 691–696.

    Article  Google Scholar 

  48. Chi, H., Tao, X.-M., and Yang, D.-X., Simultaneous measurement of axial strain, temperature, and transverse load by a superstructure fiber grating, Opt. Lett., 2001, vol. 26, no. 24, pp. 1949–1951.

    CAS  Google Scholar 

  49. Triollet, S., Robert, L., Marin, E., and Ouerdane, Y., Discriminated measures of strain and temperature in metallic specimen with embedded superimposed long and short fibre Bragg gratings, Meas. Sci. Technol., 2011, vol. 22, no. 1, doi 10.1088/0957-0233/22/1/015202

    Google Scholar 

  50. Frazzo, O., Romero, R., Rego, G., Marques, P.V.S., Salgado, H.M., and Santos, J.L., Sampled fibre Bragg grating sensors for simultaneous strain and temperature measurement, Electron. Lett., 2002, vol. 38, no. 14, pp. 693–695.

    Article  Google Scholar 

  51. Triollet, S., Robert, L., Marin, E., and Ouerdane, Y., Superimposed long period and short period Bragg grating sensor for LRI monitoring, Proc. SPIE, 2009, vol. 7503, art. ID 75035L. doi 10.1117/12.836565

    Article  Google Scholar 

  52. Demirel, M., Robert, L., Molimard, J., Vautrin, A., and Orteu, J.-J., Strain and temperature discrimination and measurement using superimposed fiber bragg grating sensor, Proc. 13th Int. Conf. on Experimental Mechanics, Alexandropoulos, 2007, pp. 639–640.

    Google Scholar 

  53. Xu, M.G., Archambault, J.-L., Reekie, L., and Dakin, J.P., Discrimination between strain and temperature effects using dual-wavelength fiber grating sensor, Electron. Lett., 1994, vol. 30, no. 13, pp. 1085–1087.

    Article  Google Scholar 

  54. Abe, I., Kalinowski, H.J., Frazão, O., Santos, J.L., Nogueira, R.N., and Pinto, J.L., Superimposed Bragg gratings in high-birefringence fibre optics: threeparameter simultaneous measurements, Meas. Sci. Technol., 2004, vol. 15, pp. 1453–1457.

    Article  CAS  Google Scholar 

  55. Caucheteur C., Lhomme F., Maakaroun F., Chah K., Blondel M., and Megret P. Simultaneous strain and temperature sensor using superimposed tilted Bragg gratings, Proc. Symp. IEEE/LEOS Benelux Chapter, Ghent, 2004, pp. 219–222.

    Google Scholar 

  56. Brady, G.P., Kalli, K., Webb, D.J., Jackson, D.A., Reekie, L., and Archambault, J.L., Simultaneous measurement of strain and temperature using the first-and second-order diffraction wavelengths of Bragg gratings, IEE Proc.: Optoelectron., 1997, vol. 144, no. 3, pp. 156–161.

    CAS  Google Scholar 

  57. Echevarría, J., Quintela, A., Jáuregui, C., and López-Higuera, J.M., Uniform fiber Bragg grating first-and second-order diffraction wavelength experimental characterization for strain-temperature discrimination, IEEE Photonics Technol. Lett., 2001, vol. 13, no. 7, pp. 696–698.

    Article  Google Scholar 

  58. Yam, S.P., Brodzeli, Z., Wade, S.A., Baxter, G.W., and Collins, S.F., Use of first-order diffraction wavelengths corresponding to dual grating periodicities in a single fiber Bragg grating for simultaneous temperature and strain measurement, Proc. SPIE, 2008, vol. 7004, art. ID 70045Z. doi 10.1117_12.786906

  59. Oh, S.T., Han, W.T., Paek, U.C., and Chung, Y., Discrimination of temperature and strain with a single FBG based on the birefringence effect, Opt. Express., 2004, vol. 12, no. 4, pp. 724–729.

    Article  Google Scholar 

  60. Wong, A.C.L., Childs, P.A., and Peng, G.D., Spectrally-overlapped chirped fibre Bragg grating sensor system for simultaneous two-parameter sensing, Meas. Sci. Technol., 2007, no. 18, pp. 3825–3832.

    Article  CAS  Google Scholar 

  61. Bhatia, V., Campbell, D., and Claus, R.O., Simultaneous strain and temperature measurement with longperiod gratings, Opt. Lett., 1997, vol. 22, no. 9, pp. 648–650.

    Article  CAS  Google Scholar 

  62. Guan, B.-O., Tam, H.-Y., Tao, X.-M., and Dong, X.-Y., Simultaneous strain and temperature measurement using a superstructure fiber Bragg grating, IEEE Photonics Tech. Lett., 2000, vol. 12, no. 6, pp. 675–677.

    Article  Google Scholar 

  63. Haber, T.C., Ferguson, S., Guthrie, D., Graver, T.W., and Soller, B.J., Analysis, compensation and correction of temperature effects on FBG strain sensors, Proc. SPIE, 2013, vol. 8722. doi 10.1117/12.2018772

  64. Zhou, D.-P., Wei, L., Liu, W.-K., Liu, Y., and Li, J.W.Y., Simultaneous measurement for strain and temperature using fiber Bragg gratings and multimode fibers, Appl. Opt., 2004, vol. 47, no. 10, pp. 1668–1672.

    Article  Google Scholar 

  65. Chen, G.H., Liu, L.Y., Jia, H.Z., Yu, J.M., Xu, L., and Wang, W.C., Simultaneous pressure and temperature measurement using Hi-Bi fiber Bragg gratings, Opt. Commun., 2003, vol. 228, pp. 99–105.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Makhsidov.

Additional information

Original Russian Text © V.V. Makhsidov, A.M. Shienok, D.V. Ioshin, V.A. Reznikov, 2016, published in Zavodskaya Laboratoriya, Diagnostika Materialov, 2016, Vol. 82, No. 11, pp. 54–60.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Makhsidov, V.V., Shienok, A.M., Ioshin, D.V. et al. Measurement of Material Deformation with Fiber Bragg Gratings (Summarization). Inorg Mater 53, 1570–1577 (2017). https://doi.org/10.1134/S0020168517150092

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168517150092

Keywords

Navigation