Skip to main content
Log in

LiNbO3 films: Potential application, synthesis techniques, structure, properties

  • Published:
Inorganic Materials Aims and scope

Abstract

The main directions of application and synthesis of lithium niobate (LiNbO3) and the advantages and drawbacks of the synthesis techniques are considered. The results of structural and morphological characteristics appropriate for use in the creation of devices are shown. The tasks for successful implementation of LiNbO3 films into novel devices are formulated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kuz’minov, Yu.S., Niobat i tantalat litiya—materialy dlya nelineinoi optiki, Moscow: Nauka, 1975, p. 224.

    Google Scholar 

  2. Matthias, B.T. and Remeika, J.P., Ferroelectricity in the ilmenite structure, Phys. Rev. American Physical Society, 1949, vol. 76, no. 12, pp. 1886–1887.

    Google Scholar 

  3. Ballman, A.A., Growth of piezoelectric and ferroelectric materials by the Czochralski technique, J. Am. Ceramic Soc, 1965, vol. 48, no. 2, p. 112.

    CAS  Google Scholar 

  4. Wong, K.K., Properties of lithium niobate, London: INSPEC/Institution of Electrical Engineers, 2002.

    Google Scholar 

  5. Volk, T., and Wöhlecke, M., Lithium niobate: defects, photorefraction and ferroelectric switching, Berlin; Heidelberg: Springer, 2008.

    Google Scholar 

  6. Shcherbina, O., Palatnikov, M., and Kokhanchik, L., Sintez, svoistva kristallov LiNbO3i LiTaO3s mikro-i nanostrukturami, LAP, 2013, p. 168.

    Google Scholar 

  7. Muralt, P. et al., Ferroelectric thin films for microsensors and actuators: a review, J. Micromechanics Microengineering, 2000, vol. 10, no. 2, pp. 136–146.

    CAS  Google Scholar 

  8. Jayadevan, K.P. and Tseng, T.Y., Review composite and multilayer ferroelectric thin films: processing, properties and applications, J. Mater. Sci. Mater. Electron, 2002, vol. 13, no. 8, pp. 439–459.

    CAS  Google Scholar 

  9. Poberaj, G. et al., Lithium niobate on insulator (LNOI) for micro-photonic devices, Laser Photon. Rev., 2012, vol. 6, no. 4, pp. 488–503.

    CAS  Google Scholar 

  10. Buchal, C. and Siegert, M., Ferroelectric thin films for optical applications, Integr. Ferroelectr, 2001, vol. 35, no. 1, pp. 1–10.

    CAS  Google Scholar 

  11. Pogossian, S.P. and Le Gall H. Modeling planar leaky optical waveguides, J. Appl. Phys., 2003, vol. 93, no. 5, p. 2337.

    CAS  Google Scholar 

  12. Fork, D.K., Armani-Leplingard, F., and Kingston, J.J., Application of electroceramic thin films to optical waveguide devices, MRS Bull., 1996, pp. 53–58.

    Google Scholar 

  13. Wohltjen, H., Mechanism of operation and design considerations for surface acoustic wave device vapour sensors, Sen. Actuators, 1984, vol. 5, no. 4, pp. 307–325.

    CAS  Google Scholar 

  14. Lee, T.C. et al., Surface acoustic wave applications of lithium niobate thin films, Appl. Phys. Lett., 2003, vol. 82, no. 2, pp. 191–193.

    CAS  Google Scholar 

  15. Runde, D. et al., Integrated optical electric field sensor based on a Bragg grating in lithium niobate, Appl. Phys. B, 2006, vol. 86, no. 1, pp. 91–95.

    Google Scholar 

  16. Shih, W.-C. et al., Growth of c-axis oriented LiNbO3 film on sapphire by pulsed laser deposition for surface acoustic wave applications, Jpn. J. Appl. Phys., 2008, vol. 47, no. 5, pp. 4056–4059.

    CAS  Google Scholar 

  17. Kadota, M. et al., High-frequency lamb wave device composed of MEMS structure using LiNbO3 thin film and air gap, IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 2010, vol. 57, no. 11, pp. 2564–2571.

    Google Scholar 

  18. Dogheche, E. et al., Growth process and surface acoustic wave characteristics of LiNbO3 /diamond/silicon multilayered structures, Jpn. J. Appl. Phys., 2003, vol. 42, pp. 572–574.

    CAS  Google Scholar 

  19. Tan, T. et al. Sputter deposited c-oriented LiNbO3 thin films on SiO2, J. Appl. Phys., 1996, vol. 79, no. 7, pp. 3548–3553.

    CAS  Google Scholar 

  20. Moon, S. et al. Characteristics of metal-LiNbO3-Si for a single transistor FRAM, Conference: Applications of Ferroelectrics, 2000.

    Google Scholar 

  21. Gupta, V. et al., Growth and characterization of c-axis oriented LiNbO3 film on a transparent conducting Al:ZnO inter-layer on Si, J. Mater. Res., 2004, vol. 19, no. 8, pp. 2235–2239.

    CAS  Google Scholar 

  22. Hao, L. et al., Epitaxial fabrication and memory effect of ferroelectric LiNbO3 film/ AlGaN/GaN heterostructure, Appl. Phys. Lett., 2009, vol. 95, p. 232907.

    Google Scholar 

  23. You, P. et al., Growth of highly near-c-axis oriented ferroelectric LiNbO3 thin films on Si with a ZnO buffer layer, Appl. Phys. Lett., 2013, vol. 102, p. 051914.

    Google Scholar 

  24. Zaitsev, I., Chto, zhe stalo s FRAM pamyat’yu?, Komponenty i tekhnologii, 2007, no. 8, pp. 60–64.

    Google Scholar 

  25. Takiev, A.S., Budushchie tekhnologii pamyati: FeRAM iznutri, 2003, https://3dnews.ru/172104, p. 172104.

    Google Scholar 

  26. Czabaj, B.M., Patent US8658435 B2, 2014.

    Google Scholar 

  27. Lee, S-Y., Patent US6605835 B2, 2003.

    Google Scholar 

  28. Scott, J.F., and Paz de Araujo, C.A. Ferroelectric memories, Science, 1989, vol. 246, pp. 1400–1405.

    CAS  Google Scholar 

  29. Shu, W. et al. Experimental study of LiNbO3 memristors for use in neuromorphic computing, Microelectronic Engineering, 2017, V. 168, pp. 37–40.

    Google Scholar 

  30. Haitao, L. et al., Memristive behaviors of LiNbO3 ferroelectric diodes, Appl. Phys. Lett., 2010, vol. 97, p. 012902.

    Google Scholar 

  31. Greenlee, J.D., Petersburg, C.F., et al. In-situ oxygen X-ray absorption spectroscopy investigation of the resistance modulation mechanism in LiNbO2 memristors, Appl. Phys. Lett., 2012, vol. 100, p. 182106.

    Google Scholar 

  32. Pan, X. et al., Rectifying filamentary resistive switching in ion-exfoliated LiNbO3 thin films, Appl. Phys. Lett., 2016, vol. 108, p. 032904.

    Google Scholar 

  33. Strukov, D.B. et al., The missing memristor found, Nature, 2008, vol. 453, pp. 80–83.

    CAS  Google Scholar 

  34. Yang, J.J. et al., Memristive switching mechanism for metal/oxide/metal nanodevices, Nature Nanotechnol., 2008, vol. 3, pp. 429–433.

    CAS  Google Scholar 

  35. Driscoll, T. et al., Phase-transition driven memristive system, Appl. Phys. Lett., 2009, vol. 95, p. 043503.

    Google Scholar 

  36. Di Ventra, M. et al., Elements with memory: memristors, memcapacitors, and meminductors, IEEE, 2009, vol. 97, no. 10, pp. 1717–1724.

    Google Scholar 

  37. Lu, W., Patent US 20130134379 A1, 2013.

    Google Scholar 

  38. Sheng, P. et al., Structure and ferromagnetism in vanadium-doped LiNbO3, J. Appl. Phys., 2012, vol. 112, no. 3, pp. 1–7.

    Google Scholar 

  39. Song, C. et al., Room temperature ferromagnetism and ferroelectricity in cobalt-doped LiNbO3 film, Appl. Phys. Lett., 2008, vol. 92, no. 26, pp. 2901–262901.

    Google Scholar 

  40. Díaz-Moreno, C. et al., Multiferroic response of nanocrystalline lithium niobate, J. Appl. Phys., 2012, vol. 111, no. 7, pp. 5–8.

    Google Scholar 

  41. Ishii, M. et al., Ferromagnetism of nano-LiNbO3 with vacancies, Trans. Mater. Res. Soc. Japan, 2012, vol. 37, no. 3, pp. 443–446.

    CAS  Google Scholar 

  42. Vasconcelos, N.S.L.S. et al., Epitaxial growth of LiNbO3 thin films in a microwave oven, Thin Solid Films, 2003, vol. 436, no. 2, pp. 213–219.

    CAS  Google Scholar 

  43. Postnikov, V.S., Ievlev, V.M., Zolotukhin, I.V., and Rodin, G.S., Vyrashchivanie epitaksial’nykh plenok LiNbO3, Izv. AN SSSR. Neorganicheskie Materialy, 1973, vol. 9, no. 8, pp. 1455–1456.

    CAS  Google Scholar 

  44. Ballman, A.A. et al., The growth of LiNbO3 thin films by liquid phase epitaxial techniques, Journal of Crystal Growth, 1975, vol. 29, no. 3, pp. 289–295.

    CAS  Google Scholar 

  45. Kondo, S. et al., Liquid-phase-epitaxial growth of single- crystal LiNbO3 thin film, Applied Physics Letters, 1975, vol. 26, no. 9, pp. 489–491.

    CAS  Google Scholar 

  46. Miyazawa, S., Fushimi, S., and Kondo, S., Optical waveguide of LiNbO3 thin film grown by liquid phase epitaxy, Appl. Phys. Lett., 1975, vol. 26, no. 1, pp. 8–10.

    CAS  Google Scholar 

  47. Ballman, A.A. and Tien, P.K., Patent US 3998687 A, 1976.

    Google Scholar 

  48. Dubs, C. et al., Rib waveguides based on Zn-substituted LiNbO3 films grown by liquid phase epitaxy, Opt. Mater. (Amst), 2009, vol. 31, no. 11, pp. 1650–1657.

    CAS  Google Scholar 

  49. Lu, Y., Dekker, P., and Dawes, J.M., Growth and characterization of lithium niobate planar waveguides by liquid phase epitaxy, J. Cryst. Growth, 2009, vol. 311, no. 5, pp. 1441–1445.

    CAS  Google Scholar 

  50. Margueron, S. et al., Effect of deposition conditions on the stoichiometry and structural properties of LiNbO3 thin films deposited by MOCVD, Proc. SPIE—Int. Soc. Opt. Eng., p. 8626.

  51. Dislich, H., New routes to multicomponent oxide glasses, Angew. Chemie Int. Ed. English, 1971, vol. 10, no. 6, pp. 363–370.

    CAS  Google Scholar 

  52. Hirano, S. and Kato, K., Formation of LiNbO3 films by hydrolysis of metal alkoxides, J. Non. Cryst. Solids, 1988, vol. 100, no. 1, pp. 538–541.

    CAS  Google Scholar 

  53. Nashimoto, K. and Cima, M.J., Epitaxial LiNbO3 thin films prepared by a sol-gel process, Mater. Lett., 1991, vol. 10, no. 7–8, pp. 348–354.

    Google Scholar 

  54. Simões, A.Z. et al., Potassium niobate thin films prepared through polymeric precursor method, Mater. Lett., 2004, vol. 58, no. 20, pp. 2537–2540.

    Google Scholar 

  55. Fakhri, M.A. et al., Optical investigation of nanophotonic lithium niobate-based optical waveguide, Appl. Phys. B Lasers Opt., 2015, vol. 121, no. 1, pp. 107–116.

    CAS  Google Scholar 

  56. Schwartz, H. and Tourtellotte, H.A., Vacuum deposition by high-energy laser with emphasis on barium titanate films, Vac. Sci. Technol., 1969, vol. 6, p. 3763.

    Google Scholar 

  57. Baumann, R.C., Rost, T.A., and Rabson, T.A., Deposition and physical characterization of thin films of lithium niobate on silicon substrates, J. Appl. Phys., 1990, vol. 68, p. 2989.

    CAS  Google Scholar 

  58. Shibata, Y., Kaya, K., and Akashi, K., Epitaxial growth of LiNbO3 thin films by excimer laser ablation method and their surface acoustic wave properties, J. Appl. Phys., 1992, vol. 61, p. 1000.

    CAS  Google Scholar 

  59. Ogale, S.B. et al., Pulsed laser deposition of stoichiometric LiNbO3 thin films by using O2 and Ar gas mixtures as ambients, J. Appl. Phys., 1992, vol. 11, p. 5718.

    Google Scholar 

  60. Lee, S.H. et al., Low-temperature growth of epitaxial LiNbO3 films on sapphire (0001) substrates using pulsed laser deposition, J. Appl. Phys., 1995, vol. 67, p. 43.

    CAS  Google Scholar 

  61. Gonzalo, J. et al., Li deficiencies in LiNbO3 films prepared by pulsed laser deposition in a buffer gas, J. Appl. Phys., 1997, vol. 82, p. 3129.

    CAS  Google Scholar 

  62. Balestrino, G. et al., Epitaxial LiNbO3 thin films grown by pulsed laser deposition for optical waveguides, Appl. Phys. Lett., 2001, vol. 78, p. 1204.

    CAS  Google Scholar 

  63. Jelínek, M. et al., Composition, XRD and morphology study of laser prepared LiNbO3 films, Appl. Phys. A Mater. Sci. Process, 2013, vol. 110, no. 4, pp. 883–888.

    Google Scholar 

  64. Wang, X. et al., Oxygen pressure dependent growth of pulsed laser deposited LiNbO3 films on diamond for surface acoustic wave device application, J. Cryst. Growth, 2013, vol. 375, pp. 73–77.

    CAS  Google Scholar 

  65. Wang, X. et al., Influence of substrate temperature on the growth and optical waveguide properties of oriented LiNbO3 thin films, J. Cryst. Growth, 2007, vol. 306, pp. 62–67.

    CAS  Google Scholar 

  66. Foster, N.F. The deposition and piezoelectric characteristics of sputtered lithium niobate films, J. Appl. Phys., 1969, vol. 40, no. 1, pp. 420–421.

    CAS  Google Scholar 

  67. Russo, D.P.G. and Kumar, C.S., Sputtered ferroelectric thin-film electro-optic modulator, Appl. Phys. Lett., 1973, vol. 23, no. 5, pp. 229–231.

    Google Scholar 

  68. Takada, S. et al., Optical waveguides of single-crystal LiNbO3 film deposited by rf sputtering, Appl. Phys. Lett., 1974, vol. 24, no. 10, p. 490.

    CAS  Google Scholar 

  69. Hewig, G.M. et al., R.F. sputtering of LiNbO3 thin films, Thin Solid Films, 1982, vol. 88, no. 1, pp. 67–74.

    CAS  Google Scholar 

  70. Rabson, T.A., Baumann, R.C., and Timothy, A., Thin film lithium niobate on silicon, Ferroelectrics, 1990, vol. 112, pp. 265–271.

    CAS  Google Scholar 

  71. Kanata, T., Kobayashi, Y., and Kubota, K., Epitaxial growth of LiNbO3–LiTaO3 thin films on Al2O3, J. Appl. Phys., 1987, vol. 62, no. 7, pp. 2989–2993.

    CAS  Google Scholar 

  72. Sumets, M. et al., Sputtering condition effect on structure and properties of LiNbO3 films, J. Mater. Sci. Mater. Electron, 2015, vol. 26, no. 6, pp. 4250–4256.

    CAS  Google Scholar 

  73. Iyevlev, V. et al., Electrical and structural properties of LiNbO3 films, grown by RF magnetron sputtering, J. Mater. Sci. Mater. Electron, 2011, vol. 22, no. 9, pp. 1258–1263.

    CAS  Google Scholar 

  74. Ievlev, V.M. et al., Struktura i svoistva plenok LiNbO3, poluchennykh metodom vysokochastotnogo magnetronnogo raspyleniya, Perspektivnye Materialy, 2010, vol. 3, pp. 26–33.

    Google Scholar 

  75. Sidorov, N.V. and Kalinnikov, V.T., Protsessy razuporyadocheniya v segnetoelektricheskikh kristallakh i ikh proyavlenie v spektrakh kombinatsionnogo rasseyaniya sveta (Processes of disordering in ferroelectric crystals and their manifestation in Raman spectra), Apatity: izd. Kol’skogo nauchnogo tsentra RAN, 2001.

    Google Scholar 

  76. Sumets, M. et al., Electrical properties of Si-LiNbO3 heterostructures grown by radio-frequency magnetron sputtering in an Ar + O2 environment, Thin Solid Films, 2014, vol. 552, pp. 32–38.

    CAS  Google Scholar 

  77. Akazawa, H. and Shimada, M., Factors driving c-axis orientation and disorientation of LiNbO3 thin films deposited on TiN and indium tin oxide by electron cyclotron resonance plasma sputtering, J. Appl. Phys., 2006, vol. 99, no. 12, p. 124103.

    Google Scholar 

  78. Ievlev, V.M. and Rodin, G.S., Rost i struktura kondensirovannykh plenok BaTiO3 i LiNbO3, in Sb. Voprosy fiziki tverdogo tela. (Issues of solid state physics), Voronezh: VPI, 1973, pp. 136–141.

    Google Scholar 

  79. Rodin, G.S., Poluchenie, substruktura, orientatsiya i fazovyi sostav plenok niobat litiya, Cand. Sci. (Physmath) Dissertation, Voronezh, 1986.

    Google Scholar 

  80. Park, S.K. et al., Properties of LiNbO3 thin film prepared from ceramic Li–Nb–K–O target, Solid State Commun., 1999, vol. 111, no. 6, pp. 347–352.

    CAS  Google Scholar 

  81. Simões, A.Z. et al., Influence of oxygen atmosphere on crystallization and properties of LiNbO3 thin films, J. Eur. Ceram. Soc., 2004, vol. 24, no. 6, pp. 1607–1613.

    Google Scholar 

  82. Kiselev, D.A. et al. Effect of annealing on the structure and phase composition of thin electro-optical lithium niobate films, Inorganic Materials, 2014, vol. 50, no. 4, pp. 419–422.

    CAS  Google Scholar 

  83. Bornand, V. et al. LiNbO3 thin films deposited on Si substrates: a morphological development study, Mater. Chem. Phys., 2002, vol. 77, pp. 571–577.

    Google Scholar 

  84. Akazawa, H. and Shimada, M., Correlation between interfacial structure and c-axis-orientation of LiNbO3 films grown on Si and SiO2 by electron cyclotron resonance plasma sputtering, Journal of Crystal Growth, 2004, vol. 270, pp. 560–567.

    CAS  Google Scholar 

  85. Akazawa, H. et al., Mechanism for LiNb3O8 phase formation during thermal annealing of crystalline and amorphous LiNbO3 thin films, J. Mater. Res., 2007, vol. 22, pp. 1726–1736.

    CAS  Google Scholar 

  86. Veignant, F. et al., Structural evolution of lithium niobate deposited on sapphire (0001): from early islands to continuous films, J. Cryst. Growth, 1999, vol. 196, no. 1, pp. 141–150.

    CAS  Google Scholar 

  87. Ievlev, V.M., Tonkie plenki neorganicheskikh materialov: mekhanizm rosta i struktura: uch. posobie, (Thin films of inorganic minerals: growth mechanism and structure), Voronezh: VGU, 2008, p. 496.

    Google Scholar 

  88. Lee, G.H., Yoshimoto, M., and Koinuma, H., Selfassembled island formation of LiNbO3 by pulsed laser deposition on α-Al2O3 substrate, Appl. Surf. Sci., 1998, vol. 127, pp. 393–397.

    Google Scholar 

  89. Feigelson, R.S., Epitaxial growth of lithium niobate thin films by the solid source MOCVD method, J. Cryst. Growth, 1996, vol. 166, no. 1, pp. 1–16.

    CAS  Google Scholar 

  90. Shtansky, D.V. et al. Crystallography and structural evolution of LiNbO3 and LiNb1–xTaxO3 films on sapphire prepared by high-rate thermal plasma spray chemical vapor deposition, J. Mater. Res., 2001, vol. 16, no. 8, pp. 2271–2279.

    CAS  Google Scholar 

  91. He, J. and Ye, Z., Highly c-axis oriented LiNbO3 thin film on amorphous SiO2 buffer layer and its growth mechanism, Chinese Sci. Bull., 2003, vol. 48, no. 21, p. 2290.

    CAS  Google Scholar 

  92. Akazawa, H., Nucleation and crystallization of Li2O–Nb2O5 ternary compound thin films co-sputtered from LiNbO3 and Li2O targets, Thin Solid Films, 2014, vol. 556, pp. 74–80.

    CAS  Google Scholar 

  93. Mercante, A.J. et al., 110 GHz CMOS compatible thin film LiNbO3 modulator on silicon, Opt. Express, 2016, vol. 24, no. 14, p. 15590.

    CAS  Google Scholar 

  94. Iyevlev, V., Kostyuchenko, A., and Sumets, M., Fabrication, substructure and properties of LiNbO3 films, Proceedings of SPIE, The International Society for Optical Engineering. International Society for Optics and Photonics, 2011, vol. 7747, p. 77471.

    Google Scholar 

  95. Bornand, V. and Papet, P., LiNbO3-based ferroelectric heterostructures, Journal de Physique IV, 2005, vol. 126, pp. 89–92.

    CAS  Google Scholar 

  96. Akazawa, H. and Fukuda, H., Epitaxial ZnO/LiNbO3/ZnO stacked layer waveguide for application to thin-film Pockels sensors, AIP Adv., 2015, vol. 5, no. 5, p. 57163.

    Google Scholar 

  97. Kao, M.C. et al., Pyroelectric Ta-modified LiNbO3 thin films and devices for thermal infrared detection, Thin Solid Films, 2008, vol. 516, no. 16, pp. 5518–5522.

    CAS  Google Scholar 

  98. Lee, C.-T. et al., GaN-based enhancement-mode metal-oxide-semiconductor high-electron mobility transistors using LiNbO3 ferroelectric insulator on gate-recessed structure, IEEE Trans. Electron Devices, 2015, vol. 62, no. 8, pp. 2481–2487.

    CAS  Google Scholar 

  99. Sumets, M. et al., Influence sputtering conditions on electrical characteristics of Si-LiNbO3 heterostructures formed by radio-frequency magnetron sputtering, Mol. Cryst. Liq. Cryst., 2014, vol. 603, no. 1, pp. 202–215.

    CAS  Google Scholar 

  100. Kiselev, D.A. et al., The effect of silicon-substrate orientation on the local piezoelectric characteristics of LiNbO3 films, J. Surf. Investig. X-ray. Synchrotron Neutron Tech., 2016, vol. 10, no. 4, pp. 742–747.

    CAS  Google Scholar 

  101. Ievlev, V. et al., Band diagram of the Si-LiNbO3 heterostructures grown by radio-frequency magnetron sputtering, Thin Solid Films, 2013, vol. 542, pp. 289–294.

    CAS  Google Scholar 

  102. Sumets, M., Charge transport in LiNbO3-based heterostructures, J. Nonlinear Opt. Phys. Mater., 2017, vol. 26, no. 1, p. 1750011.

    CAS  Google Scholar 

  103. Ievlev, V., Sumets, M., and Kostyuchenko, A., Conduction mechanisms in Si-LiNbO3 heterostructures grown by ion-beam sputtering method, J. Mater. Sci., 2013, vol. 48, no. 4, pp. 1562–1570.

    CAS  Google Scholar 

  104. Hao, L.Z. et al., Electron trap memory characteristics of LiNbO3 film/AlGaN/GaN heterostructure, Appl. Phys. Lett., 2010, vol. 96, no. 3, p. 32103.

    Google Scholar 

  105. Sumets, M. et al., Temperature transition of p- to ntype conduction in the LiNbO3/Nb2O5 polycrystalline films, Mater. Chem. Phys., 2017, vol. 191, pp. 35–44.

    CAS  Google Scholar 

  106. Lim, D. et al., Characteristics of LiNbO3 memory capacitors fabricated using a low thermal budget process, Solid. State. Electron., 2001, vol. 45, no. 7, pp. 1159–1163.

    CAS  Google Scholar 

  107. Tsirlin, M., Influence of gas phase composition on the defects formation in lithium niobate, J. Mater. Sci., 2004, vol. 39, no. 9, pp. 3187–3189.

    CAS  Google Scholar 

  108. Gordillo-Vázquez, F.J. and Afonso, C.N., Influence of Ar and O2 atmospheres on the Li atom concentration in the plasma produced by laser ablation of LiNbO3, J. Appl. Phys., 2002, vol. 92, no. 12, p. 7651.

    Google Scholar 

  109. Simões, A.Z. et al., Influence of oxygen flow on crystallization and morphology of LiNbO3 thin films, Ferroelectrics, 2002, vol. 271, no. 1, pp. 33–38.

    Google Scholar 

  110. Sumets, M. et al., Influence of thermal annealing on structural properties and oxide charge of LiNbO3 films, J. Mater. Sci. Mater. Electron., 2015, vol. 26, no. 10, pp. 7853–7859.

    CAS  Google Scholar 

  111. Iyevlev, V., Sumets, M., and Kostyuchenko, A., Current- voltage characteristics and impedance spectroscopy of LiNbO3 films grown by RF magnetron sputtering, J. Mater. Sci. Mater. Electron, 2012, vol. 23, no. 4, pp. 913–920.

    CAS  Google Scholar 

  112. Lanfredi, S. and Rodrigues, A.C.M., Impedance spectroscopy study of the electrical conductivity and dielectric constant of polycrystalline LiNbO3, J. Appl. Phys., 1999.

    Google Scholar 

  113. Ievlev, V. et al., Dielectric losses and ac conductivity of Si-LiNbO3 heterostructures grown by the RF magnetron sputtering method, J. Mater. Sci. Mater. Electron., 2013, vol. 24, no. 5, pp. 1651–1657.

    CAS  Google Scholar 

  114. Joshi, V., Roy, D., and Mecartney, M.L., Nonlinear conduction in textured and non textured lithium niobate thin films, Integr. Ferroelectr., 1995, vol. 6, no. 1, pp. 321–327.

    CAS  Google Scholar 

  115. Gorbenko, O.Yu., Struktura i svoistva perovskitnykh i perovskitopodobnykh tonkoplenochnykh materialov, poluchennykh khimicheskim osazhdeniem iz para: dis. d. khim. nauk (Structure and properties of perovskite-like thin film material, obtained by chemical vapor depositions: PhD dissertation), Moscow, 2003.

    Google Scholar 

  116. Nakamura, A. et al., Dislocation structure at a \(\left\{ {\bar 12\bar 10} \right\}/\left\{ {10\bar 10} \right\}\) low-angle tilt grain boundary in LiNbO3, J. Mater. Sci., 2012, vol. 47, no. 13, pp. 5086–5096.

    CAS  Google Scholar 

  117. Furushima, Y. et al., Dislocation structures and electrical conduction properties of low angle tilt grain boundaries in LiNbO3, J. Appl. Phys., 2016, vol. 120, no. 14.

    Google Scholar 

  118. Veignant, F., Epitaxial growth of LiNbO3 on αAl2O3(0001), Thin Solid Films, 1998, vol. 336, nos. 1–2, pp. 163–167.

    CAS  Google Scholar 

  119. Abrahams, S.C., Reddy, J.M., and Bernstein, J.L., Ferroelectric lithium niobate. 3. Single crystal x-ray diffraction study at 24°C, J. Phys. Chem. Solids, 1966, vol. 27, no. 6, pp. 997–1012.

    CAS  Google Scholar 

  120. Shandilya, S., Tomar, M., and Gupta, V., Deposition of stress free c-axis oriented LiNbO3 thin film grown on (002) ZnO coated Si substrate, J. Appl. Phys., 2012, vol. 111, no. 10, pp. 10–16.

    Google Scholar 

  121. Shandilya, S. et al., Purely hopping conduction in caxis oriented LiNbO3 thin films, J. Appl. Phys., 2009, vol. 105, no. 9, p. 94105.

    Google Scholar 

  122. Mansingh, A. and Dhar, A., The AC conductivity and dielectric constant of lithium niobate single crystals, J. Phys. D: Appl. Phys., 1985, vol. 18, no. 10, pp. 2059–2071.

    CAS  Google Scholar 

  123. Shandilya, S. et al., Optical properties of the c-axis oriented LiNbO3 thin film, Thin Solid Films, 2012, vol. 520, no. 6, pp. 2142–2146.

    CAS  Google Scholar 

  124. Satapathy, S. et al., Blue shift of optical band-gap in LiNbO3 thin films deposited by sol-gel technique, Thin Solid Films, 2012, vol. 520, no. 21, pp. 6510–6514.

    CAS  Google Scholar 

  125. Ching, W.Y., Gu, Z.-Q., and Xu, Y.-N., First-principles calculation of the electronic and optical properties of LiNbO3, Phys. Rev. B, 1994, vol. 50, no. 3, pp. 1992–1995.

    CAS  Google Scholar 

  126. Bhatt, R. et al., Urbach tail and bandgap analysis in near stoichiometric LiNbO3 crystals, Phys. Status Solidi, 2012, vol. 209, no. 1, pp. 176–180.

    CAS  Google Scholar 

  127. Schmidt, W.G. et al., LiNbO3 ground- and excitedstate properties from first-principles calculations, Phys. Rev. B, 2008, vol. 77, no. 3, p. 35106.

    Google Scholar 

  128. Schulz, M.B. and Matsinger, J.H., Rayleigh-wave electromechanical coupling constants, Appl. Phys. Lett., 1972, vol. 20, no. 9, pp. 367–369.

    CAS  Google Scholar 

  129. Nelson, D.F. and Mikulyak, R.M., Refractive indices of congruently melting lithium niobate, J. Appl. Phys., 1974, vol. 45, no. 8, pp. 3688–3689.

    CAS  Google Scholar 

  130. Choi, S.-W. et al., Effect of RTA treatment on LiNbO3 MFS memory capacitors, Korean J. Ceram, 2000, vol. 6, no. 2, pp. 138–142.

    CAS  Google Scholar 

  131. Simões, A.Z. et al., LiNbO3 thin films prepared through polymeric precursor method, Mater. Lett., 2003, vol. 57, no. 15, pp. 2333–2339.

    Google Scholar 

  132. Easwaran, N. et al., Dielectric and AC conduction properties of thermally evaporated lithium niobate thin films, Phys. Status Solidi, 1992, vol. 129, no. 2, pp. 443–451.

    CAS  Google Scholar 

  133. Edon, V., Rèmiens, D., and Saada, S., Structural, electrical and piezoelectric properties of LiNbO3 thin films for surface acoustic wave resonators applications, Appl. Surf. Sci., 2009, vol. 256, no. 5, pp. 1455–1460.

    CAS  Google Scholar 

  134. Yamada, T., Niizeki, N., and Toyoda, H., Piezoelectric and elastic properties of lithium niobate single crystals, Jpn. J. Appl. Phys., 1967, vol. 6, no. 2, pp. 151–155.

    CAS  Google Scholar 

  135. Kwang-Ho, Kim. et al., Properties of lithium niobate thin films by RF magnetron sputtering with wafer target, J. Korean Phys. Soc., 1998, vol. 32, pp. 1508–1512.

    Google Scholar 

  136. Wemple, S.H. et al., Relationship between linear and quadratic electro-optic coefficiens in LiNbO3, LiTaO3, and other oxygen-octahedra ferroelectrics based on direct measurement of spontaneous polarization, Appl. Phys. Lett., 1968, vol. 12, no. 6, pp. 209–211.

    CAS  Google Scholar 

  137. Zhao, J.P., Liu, X.R., and Qiang, L.S., Preparation and characterization of LiNbO3 thin films derived from metal carboxylate gels, Key Eng. Mater., 2007, vol. 336–338, pp. 213–216.

    Google Scholar 

  138. Kim, Y.-S. et al., Properties of LiNbO3 thin films fabricated by CSD (chemical solution decomposition) method (AWAD2003: Asia-Pacific workshop on fundamental and application of advanced semiconductor devices), Technical report of IEICE. SDM, 2003, vol. 103, no. 162, pp. 33–36.

    Google Scholar 

  139. Lee, T.-H. et al., Investigation of LiNbO3 thin films grown on Si substrate using magnetron sputter, Mater. Sci. Eng. B., 2007, vol. 136, no. 1, pp. 92–95.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Dybov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sumets, M.P., Dybov, V.A. & Ievlev, V.M. LiNbO3 films: Potential application, synthesis techniques, structure, properties. Inorg Mater 53, 1361–1377 (2017). https://doi.org/10.1134/S0020168517130015

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168517130015

Keywords

Navigation