Skip to main content
Log in

Synthesis and characterization of three-dimensional flower-like tin dioxide-based structures

  • Published:
Inorganic Materials Aims and scope

Abstract

Three-dimensional flower-like SnO2-based structures have been produced by the alkaline hydrothermal treatment of t-SnO2 powder with no additive and in the presence of aminoterephthalic acid (ATPA). The synthesis products have been characterized by a variety of physicochemical techniques (scanning electron microscopy, transmission electron microscopy, Raman and IR spectroscopies, X-ray diffraction, and others). The results demonstrate that raising the ATPA concentration in the reaction mixture changes the morphology of the materials and leads to the SnO2 → SnO2/Sn3O4 → Sn3O4 phase transformation in the structures through the formation of SnO x nonstoichiometric tin oxide phases with 1 < x < 2. Hydrothermal treatment of the starting reagents in the presence of ≤75 wt % ATPA leads to the formation of hierarchical structures dominated by a nonstoichiometric tin oxide, which is thermally unstable at t ≥ 500°C. The morphology and phase composition of the synthesized structures have been shown to have a significant effect on the electronic conductivity of the material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wang, H. and Rogach, A.L., Hierarchical SnO2 nanostructures: recent advances in design, synthesis, and applications, Chem. Mater., 2014, vol. 26, pp. 123–133.

    Article  CAS  Google Scholar 

  2. Das, S. and Jayaraman, V., SnO2: a comprehensive review on structures and gas sensors, Prog. Mater. Sci., 2014, vol. 66, pp. 112–255.

    Article  CAS  Google Scholar 

  3. Zeng, W., Zhang, H., Li, Y., Chen, W., and Wang, Z., Hydrothermal synthesis of hierarchical flower-like SnO2 nanostructures with enhanced ethanol gas sensing properties, Mater. Res. Bull., 2014, vol. 57, pp. 91–96.

    Article  CAS  Google Scholar 

  4. Stefik, M., Cornuz, M., Mathews, N., et al., Transparent, conducting Nb:SnO2 for host–guest photoelectrochemistry, Nano Lett., 2012, vol. 12, no. 10, pp. 5431–5435.

    Article  CAS  Google Scholar 

  5. Wan, N., Zhao, T., Suna, S., Wu, Q., and Bai, Y., Nickel and nitrogen co-doped tin dioxide nanocomposite as a potential anode material for lithium-ion batteries, Electrochim. Acta, 2014, vol. 143, pp. 257–264.

    Article  CAS  Google Scholar 

  6. Hou, L.R., Lian, L., Zhou, L., Zhang, L.H., and Yuan, C.Z., Interfacial hydrothermal synthesis of SnO2 nanorods towards photocatalytic degradation of methyl orange, Mater. Res. Bull., 2014, vol. 60, pp. 1–4.

    Article  CAS  Google Scholar 

  7. Cheng, L., Ma, S., Wang, T., et al., Highly sensitive acetic acid gas sensor based on coral-like and Y-doped SnO2 nanoparticles prepared by electrospinning, Mater. Lett., 2014, vol. 137, pp. 265–268.

    Article  CAS  Google Scholar 

  8. Chen, Y., Ma, S.Y., et al., Facile synthesis of SnO2 mesoporous tubular nanostructure with high sensitivity to ethanol, Mater. Lett., 2015, vol. 143, pp. 55–59.

    Article  Google Scholar 

  9. Wang, Y., Su, T., et al., Synthesis of hollow SnO2 microspheres and its enhanced photocatalytic properties, Mater. Let., 2014, vol. 137, pp. 241–244.

    Article  CAS  Google Scholar 

  10. Zhang, H., Zeng, W., et al., Hydrothermal synthesis of flower-like SnO2 architectures with superior gas sensing properties, Mater. Lett., 2015, vol. 145, pp. 133–136.

    Article  CAS  Google Scholar 

  11. Tao, T., He, L., Li, J., and Zhang, Y., A new way for synthesizing SnO2 nanosheets, Mater. Lett., 2015, vol. 138, pp. 45–47.

    Article  CAS  Google Scholar 

  12. Cheary, R.W. and Coelho, A.A., A fundamental parameters approach of X-ray line-profile fitting, J. Appl. Crystallogr., 1992, vol. 25, pp. 109–121.

    Article  CAS  Google Scholar 

  13. Balzar, D. and Ledbetter, H., Accurate modeling of size and strain broadening in the Rietveld refinement: the “double-Voigt” approach, Adv. X-ray Anal., 1995, vol. 38, pp. 397–404.

    CAS  Google Scholar 

  14. Guo, Y.Q., Tan, R.Q., et al., Shape-controlled growth and single-crystal XRD study of submillimeter-sized single crystals of SnO, CrystEngComm, 2011, vol. 13, pp. 5677–5680.

    Article  CAS  Google Scholar 

  15. Wang, F., Zhou, X., et al., Observation of single tin dioxide nanoribbons by confocal Raman microspectroscopy, J. Phys. Chem. C, 2007, vol. 111, pp. 18839–18843.

    Article  CAS  Google Scholar 

  16. Sarker, P. and Huda, M.N., Understanding the thermodynamic pathways of SnO-to-SnOx phase transition, Comput. Mater. Sci., 2016, vol. 111, pp. 359–365.

    Article  CAS  Google Scholar 

  17. Mcquire, K., Pan, Z., et al., Raman studies of semiconducting oxide nanobelts, J. Nanosci. Nanotechnol., 2002, vol. 2, no. 5, pp. 1–4.

    Google Scholar 

  18. Zheng, M.J., Ma, L., et al., Preparation and structural characterization of nanocrystalline SnO2 powders, Appl. Phys. A, 2005, vol. 81, pp. 721–723.

    Article  CAS  Google Scholar 

  19. Sun, S.H., Meng, G.W., et al., Raman scattering study of rutile SnO2 nanobelts synthesized by thermal evaporation of Sn powders, Chem. Phys. Lett., 2003, vol. 376, pp. 103–107.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. M. Zima.

Additional information

Original Russian Text © T.M. Zima, I.A. Bataev, 2017, published in Neorganicheskie Materialy, 2017, Vol. 53, No. 12, pp. 1311–1317.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zima, T.M., Bataev, I.A. Synthesis and characterization of three-dimensional flower-like tin dioxide-based structures. Inorg Mater 53, 1279–1285 (2017). https://doi.org/10.1134/S0020168517120196

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168517120196

Keywords

Navigation