Skip to main content
Log in

Calculation of the electronic structure and exchange interaction in the InSb and GaAs semiconductors codoped with Mn and Ni

  • Published:
Inorganic Materials Aims and scope

Abstract

Density functional theory calculations have been used to study the electronic structure of Mn-doped, Ni-doped, and Mn/Ni-codoped InSb and GaAs semiconductors. The ferromagnetic transition energy has been calculated using a multiscale method in which exchange interaction is calculated by the Hartree–Fock exact atomic method and is then included as a Hubbard parameter in calculation of the electronic structure of the material. The present calculation results demonstrate that, in all cases, there is hybridization of the impurity d states with the valence band of the host semiconductor. The contributions of the Ni and Mn dopants are approximately additive.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ohno, H., Making nonmagnetic semiconductors ferromagnetic, Science, 1998, vol. 281, pp. 951–956.

    Article  CAS  Google Scholar 

  2. Dietl, T., A ten-year perspective on dilute magnetic semiconductors and oxides, Nat. Mater., 2010, vol. 9, pp. 965–974.

    Article  CAS  Google Scholar 

  3. Novotortsev, V.M., Marenkin, S.F., Fedorchenko, I.V., and Kochura, A.V., Physicochemical foundations of synthesis of new magnets from chalcopyrites AIIBIVC, Russ. J. Inorg. Chem., 2010, vol. 55, no. 11, pp. 1762–1773.

    Article  CAS  Google Scholar 

  4. Marenkin, S.F., Izotov, A.D., Fedorchenko, I.V., and Novotortsev, V.M., Manufacture of magnetic granular structures in semiconductor–ferromagnet systems, Russ. J. Inorg. Chem., 2015, vol. 60, no. 3, pp. 295–300.

    Article  CAS  Google Scholar 

  5. Sato, K., Bergqvist, L., Kudrnovský, J., Dederichs, P.H., Eriksson, O., Turek, I., Sanyal, B., Bouzerar, G., Katayama-Yoshida, H., Dinh, V.A., Fukushima, T., Kizaki, H., and Zeller, R., First-principles theory of dilute magnetic semiconductors, Rev. Mod. Phys., 2010, vol. 82, no. 2, pp. 1633–1690.

    Article  CAS  Google Scholar 

  6. Dobrowolska, M.K., Liu, X., Furdyna, J.K., Berciu, M., Yu, K.M., and Walukiewicz, W., Controlling the Curie temperature in (Ga,Mn)As through location of the Fermi level within the impurity band, Nat. Mater., 2012, vol. 11, pp. 444–449.

    Article  CAS  Google Scholar 

  7. Gray, A.X., Minar, J., Ueda, S., Stone, P.R., Yamashita, Y., Fujii, J., Braun, J., Plucinski, L., Schneider, C.M., Panaccione, G., Ebert, H., Dubon, O.D., Kobayashi, K., and Fadley, C.S., Bulk electronic structure of the dilute magnetic semiconductor Ga1–x MnxAs through hard X-ray angle-resolved photoemission, Nat. Mater., 2012, vol. 11, pp. 957–962.

    Article  CAS  Google Scholar 

  8. Souma, S., Chen, L., Oszwałdowski, R., Sato, T., Matsukura, F., Dietl, T., Ohno, H., and Takahashi, T., Fermi level position, Coulomb gap, and Dresselhaus splitting in (Ga,Mn)As, Sci. Rep., 2016, vol. 6, paper 27 266.

    Google Scholar 

  9. Di Marco, I., Thunstro, P., Katsnelson, M.I., Sadowski, J., Karlsson, K., Lebegue, S., Kanski, J., and Eriksson, O., Electron correlations in MnxGa1–x As as seen by resonant electron spectroscopy and dynamical mean field theory, Nat. Commun., 2013, p. 3645.

    Google Scholar 

  10. Kobayashi, M., Muneta, I., Takeda, Y., Harada, Y., Fujimori, A., Krempaský, J., Schmitt, T., Ohya, S., Tanaka, M., Oshima, M., and Strocov, V.N., Unveiling the impurity band induced ferromagnetism in the magnetic semiconductor (Ga,Mn)As, Phys. Rev. B: Condens. Matter Mater. Phys., 2014, vol. 89, paper 205 204.

    Google Scholar 

  11. Burch, K.S., Shrekenhamer, D.B., Singley, E.J., Stephens, J., Sheu, B.L., Kawakami, R.K., Shiffer, P., Samarth, N., Awschalom, D.D., and Basov, D.N., Impurity band conduction in a high temperature ferromagnetic semiconductor, Phys. Rev. Lett., 2006, vol. 97, paper 0 872 088.

    Google Scholar 

  12. Samarth, N., Ferromagnetic semiconductors: battle of the bands, Nat. Mater., 2012, vol. 11, pp. 360–361.

    Article  CAS  Google Scholar 

  13. Nemec, P., Nova, V., Tesarova, N., Rozkotova, E., Reichlova, H., Butkovicova, D., Trojanek, F., Olejn, K., Maly, P., Campion, R.P., Gallagher, B.L., Sinova, J., and Jungwirth, T., The essential role of carefully optimized synthesis for elucidating intrinsic material properties of (Ga,Mn)As, Nat. Commun., 2013, vol. 4, p. 2426.

    Article  Google Scholar 

  14. Muneta, I., Ohya, S., Terada, H., and Tanaka, M., Sudden restoration of the band ordering associated with the ferromagnetic phase transition in a semiconductor, Nat. Commun., 2016, vol. 7, p. 12 013.

    Article  Google Scholar 

  15. Murashov, S.V., Yarzhemsky, V.G., Nefedov, V.I., and Murav’ev, E.N., Electronic structure of magnetic semiconductors Cd1–x MnxGeAs2 and Cu1–x MnxGaTe2, Russ. J. Inorg. Chem., 2007, vol. 52, no. 8, pp. 1243–1247.

    Article  Google Scholar 

  16. Yarzhemsky, V.G., Murashov, S.V., Nefedov, V.I., and Muraviev, E.N., Electronic structure and chemical bonds in the magnetic semiconductors MnxCd1–x GeAs2 and MnxZn1–x GeAs2, Inorg. Mater., 2008, vol. 44, no. 11, pp. 1169–1175.

    Article  CAS  Google Scholar 

  17. Yarzhemsky, V.G., Murashov, S.V., and Izotov, A.D., Calculation of the exchange interaction in the Ga1–x MnxAs magnetic semiconductor by the Hartree–Fock and DFT methods, Dokl. Phys., 2015, vol. 60, no. 11, pp. 491–494.

    Article  CAS  Google Scholar 

  18. Yarzhemsky, V.G., Murashov, S.V., and Izotov, A.D., Electronic structure and exchange interaction in Ga1–x MnxAs and In1–x MnxAs, Inorg. Mater., 2016, vol. 52, no. 2, pp. 89–93.

    Article  CAS  Google Scholar 

  19. Anderson, P.W., Localized magnetic states in metals, Phys. Rev., 1961, vol. 124, no. 1, pp. 41–53.

    Article  CAS  Google Scholar 

  20. Amusia, M.Ya. and Chernysheva, L.V., Computation of atomic processes, in A Handbook for the ATOM Programs, London: Inst. of Phys., 1997.

    Chapter  Google Scholar 

  21. Amusia, M.Ya., Chernysheva, L.V., and Yarzhemsky, V.G., Handbook of Theoretical Atomic Physics Data for Photon Absorption, Electron Scattering, and Vacancies Decay, New York: Springer, 2012.

    Google Scholar 

  22. Gonze, X., Jollet, F., Abreu Araujo, F., Adams, D., Amadon, B., et al., Recent developments in the ABINIT software package, Comput. Phys. Commun., 2016, vol. 205, pp. 106–131.

    Article  CAS  Google Scholar 

  23. Clark, S.J., Segall, M.D., Pickard, C.J., Hasnip, P.J., Probert, M.J., Refson, K., and Payne, M.C., First principles methods using CASTEP, Z. Kristallogr., 2005, vol. 220, nos. 5–6, pp. 567–570.

    CAS  Google Scholar 

  24. Vanderbilt, D., Soft self-consistent pseudopotentials in a generalized eigenvalue formalism, Phys. Rev. B: Condens. Matter Mater. Phys., 1990, vol. 41, no. 11, pp. 7892–7895(R).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. G. Yarzhemsky.

Additional information

Original Russian Text © V.G. Yarzhemsky, S.V. Murashov, A.D. Izotov, 2017, published in Neorganicheskie Materialy, 2017, Vol. 53, No. 11, pp. 1158–1162.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yarzhemsky, V.G., Murashov, S.V. & Izotov, A.D. Calculation of the electronic structure and exchange interaction in the InSb and GaAs semiconductors codoped with Mn and Ni. Inorg Mater 53, 1131–1135 (2017). https://doi.org/10.1134/S0020168517110176

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168517110176

Keywords

Navigation