Skip to main content

Influence of the degree of order and nonstoichiometry on the microstructure and microhardness of titanium monoxide

Abstract

The influence of the degree of order and nonstoichiometry on the microstructure of TiO y titanium monoxide has been studied. The microstructure of substoichiometric, stoichiometric, and superstoichiometric titanium monoxide samples has been found to be determined by the presence of various ordered phases, which nucleate and grow in a matrix consisting of the high-temperature, cubic phase. The microhardness of titanium monoxide has been shown to depend on both nonstoichiometry and the degree of order, ranging from 9.9 to 14.0 GPa. The microhardness of the ordered monoxide exceeds that of the disordered monoxide, which is due to the formation of domains of an ordered phase, which hinder dislocation motion.

This is a preview of subscription content, access via your institution.

References

  1. Watanabe, D., Castles, J.R., Jostsons, A., and Malin, A.S., The ordered structure of TiO, Acta Crystallogr., 1967, vol. 23, no. 2, pp. 307–313.

    CAS  Article  Google Scholar 

  2. Watanabe, D., Castles, J.R., Jostson, A., and Malin, A.S., Ordered structure of titanium oxide, Nature (London), 1966, vol. 210, no. 5039, pp. 934–936.

    CAS  Article  Google Scholar 

  3. Hilti, E. and Laves, F., Röntgenographische Untersuchung der Titanmonoxid-Tief-temperatur-Modifikation, Naturwissenschaften, 1968, vol. 55, no. 3, pp. 131–132.

    Article  Google Scholar 

  4. Hilti, E., Neue Phasen in System Titan–Sauerstoff, Naturwissenschaften, 1968, vol. 55, no. 3, pp. 130–131.

    CAS  Article  Google Scholar 

  5. Ehrlich, P., Phasenverhältnisse und magnetisches Verhalten im System Titan–Sauerstoff, Z. Elektrochem., 1939, vol. 45, no. 5, pp. 362–370.

    CAS  Google Scholar 

  6. Andersson, S., Collen, B., Kuylenstierna, U., and Magneli, A., Phase-analysis studies on the titanium–oxygen system, Acta Chem. Scand., 1957, vol. 11, no. 10, pp. 1641–1652.

    CAS  Article  Google Scholar 

  7. Andersson, S., Collen, B., Kruuse, G., Kuylenstierna, U., Magneli, A., Pestmalis, H., and Asbrink, S., Identification of titanium oxides by X-ray powder patterns, Acta Chem. Scand., 1957, vol. 11, no. 10, pp. 1653–1657.

    CAS  Article  Google Scholar 

  8. Marinder, B.O., Ordered, defective structures of titanium monoxide, the anti-anatase structure and related structures described through an open packing on cube units (die packing), Chem. Scr., 1981, vol. 18, no. 4, pp. 169–175.

    CAS  Google Scholar 

  9. Khaenko, B.V. and Kachkovskaya, E.T., Ordering and phase relations in the Ti–O system near titanium monoxide, Poroshk. Metall. (Kiev), 1986, no. 6, pp. 52–59.

    Google Scholar 

  10. Gusev, A.I. and Valeeva, A.A., Diffraction of electrons in the cubic Ti5O5 superstructure of titanium monoxide, JETP Lett., 2012, vol. 96, no. 6, pp. 364–369.

    CAS  Article  Google Scholar 

  11. Amano, S., Bogdanovski, D., Yamane, H., Terauchi, M., and Dronskowski, R., ε-TiO, a novel stable polymorph of titanium monoxide, Angew. Chem., Int. Ed., 2016, vol. 55, pp. 1652–1657.

    CAS  Article  Google Scholar 

  12. Ivan’ko, A.A., Tverdost’. Spravochnik (Hardness: A Handbook), Kiev: Naukova Dumka, 1968.

    Google Scholar 

  13. Iizumi, K., Kudaka, K., Hanazawa, T., and Kita, H., Physical properties of non-stoichiometric sintered TiO ceramics, J. Ceram. Soc. Jpn., 1980, vol. 8, no. 4, pp. 175–178.

    Google Scholar 

  14. Valeeva, A.A., Rempel, A.A., and Gusev, A.I., Ordering of cubic titanium monoxide into monoclinic Ti5O5, Inorg. Mater., 2001, vol. 37, no. 6, pp. 603–613.

    CAS  Article  Google Scholar 

  15. Fedorov, V.A., Tyalin, Yu.I., and Tyalina, V.A., Dislokatsionnye mekhanizmy razrusheniya dvoinikuyushchikhsya materialov (Dislocation Mechanisms of Fracture in Twinned Materials), Moscow: Mashinostroenie-1, 2004.

    Google Scholar 

  16. Valeeva, A.A., Davydov, D.A., Rempel, S.V., and Rempel, A.A., Microstructure and microhardness of vanadium oxides in the range VO0.57–VO1.29, Inorg. Mater., 2009, vol. 45, no. 8, pp. 905–909.

    CAS  Article  Google Scholar 

  17. Osnovy plasticheskoi deformatsii nanostrukturnykh materialov (Principles of Plastic Deformation in Nanostructured Materials), Gleizer, A.M., Ed., Moscow: Fizmatlit, 2016.

  18. Okamoto, H., O–Ti (oxygen–titanium), J. Phase Equilib. Diffus., 2011, vol. 32, no. 5, pp. 473–474.

    CAS  Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Valeeva.

Additional information

Original Russian Text © A.A. Valeeva, S.V. Rempel, H. Schroettner, A.A. Rempel, 2017, published in Neorganicheskie Materialy, 2017, Vol. 53, No. 11, pp. 1194–1200.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Valeeva, A.A., Rempel, S.V., Schroettner, H. et al. Influence of the degree of order and nonstoichiometry on the microstructure and microhardness of titanium monoxide. Inorg Mater 53, 1174–1179 (2017). https://doi.org/10.1134/S0020168517110152

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168517110152

Keywords

  • titanium monoxide
  • nonstoichiometry
  • microstructure
  • microhardness
  • internal strain