Skip to main content
Log in

Recrystallization behavior of zinc selenide during chromium diffusion doping

  • Published:
Inorganic Materials Aims and scope

Abstract

We have studied the effect of high-temperature diffusion doping with chromium (Cr2+) ions on the microstructure of polycrystalline zinc selenide (ZnSe). We have determined energy and kinetic characteristics of solid-state recrystallization in ZnSe and assessed the effect of chromium concentration on the rate of grain growth during the doping process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kück, S., Spectroscopy and laser characteristics of Cr2+- doped chalcogenide crystals—overview and recent results, J. Alloys Compd., 2002, vol. 341, pp. 28–33.

    Article  Google Scholar 

  2. Sorokina, I.T., Cr2+-doped II–VI materials for lasers and nonlinear optics, Opt. Mater., 2004, vol. 26, pp. 395–412.

    Article  CAS  Google Scholar 

  3. Mirov, S., Fedorov, V., Martyshkin, D., Moskalev, I., Mirov, M., and Vasilyev, S., Progress in mid-IR lasers based on Cr and Fe doped II–VI chalcogenides, IEEE. J. Sel. Top. Quantum Electron., 2015, vol. 21, no. 1, paper 1 601 719.

    Google Scholar 

  4. Vaksman, Yu.F., Pavlov, V.V., Nitsuk, Yu.A., Purtov, Yu.N., Nasibov, A.S., and Shapkin, P.V., Optical absorption and chromium diffusion in ZnSe single crystals, Semiconductors, 2005, vol. 39, no. 4, pp. 377–380.

    Article  CAS  Google Scholar 

  5. Rodin, S.A., Balabanov, S.S., Gavrishchuk, E.M., and Eremeikin, O.N., The use of a Tm:YLF laser for evaluation of the chromium diffusion coefficient in ZnSe, Opt. Zh., 2013, vol. 80, no. 5, pp. 89–93.

    Google Scholar 

  6. Shchurov, A.F., Perevoshchikov, V.A., Gracheva, T.A., Malygin, N.D., Shevarenkov, D.N., Gavrishchuk, E.M., Ikonnikov, V.B., and Yashina, E.V., Structure and mechanical properties of polycrystalline zinc sulfide, Inorg. Mater., 2004, vol. 40, no. 2, pp. 96–101.

    Article  CAS  Google Scholar 

  7. Lugueva, N.V., Luguev, S.M., and Dunaev, A.A., Thermal conductivity of polycrystalline zinc selenide, Phys. Solid State, 2003, vol. 45, no. 3, pp. 449–452.

    Article  CAS  Google Scholar 

  8. Garanin, S.G., Dmitryuk, A.V., Zhilin, A.A., Mikhailov, M.D., and Rukavishnikov, N.N., Laser ceramics: 2. Spectroscopic and lasing properties, Opt. Zh., 2011, vol. 78, no. 6, pp. 60–70.

    Google Scholar 

  9. Karaksina, E.V., Ikonnikov, V.B., and Gavrishchuk, E.M., Recrystallization behavior of ZnS during hot isostatic pressing, Inorg. Mater., 2007, vol. 43, no. 5, pp. 452–455.

    Article  CAS  Google Scholar 

  10. Gavrishchuk, E.M., Ikonnikov, V.B., and Savin, D.V., Recrystallization behavior of zinc chalcogenides during hot isostatic pressing, Inorg. Mater., 2014, vol. 50, no. 3, pp. 222–227.

    Article  CAS  Google Scholar 

  11. Triboulet, R., Ndap, J.-O., Tromson-Carli, A., Lemasson, P., Morhain, C., and Neu, G., Growth by solid phase recrystallization and assessment of large ZnSe crystals of high purity and structural perfection, J. Cryst. Growth, 1996, vol. 159, pp. 156–160.

    Article  CAS  Google Scholar 

  12. Fusil, S., Lemasson, P., Ndap, J.-O., Rivière, A., Neu, G., Tournié, E., Geoffroy, G., Zozime, A., and Triboulet, R., New results on the solid phase recrystallization of ZnSe, J. Cryst. Growth, 1998, vols. 184–185, pp. 1021–1025.

    Google Scholar 

  13. Saltykov, S.A., Stereometricheskaya metallografiya (Stereometric Metallography), Moscow: Metallurgiya, 1976, p. 270.

    Google Scholar 

  14. Fedorenko, O.A., Zagoruiko, Yu.A., and Kovalenko, N.O., Mechanical properties of ZnSe:Cr2+ single crystals, Phys. Solid State, 2012, vol. 54, no. 11, pp. 2253–2255.

    Article  CAS  Google Scholar 

  15. Ovid’ko, I.A., Theories of grain growth and methods for suppressing it in nanocrystalline and polycrystalline materials, Fiz. Mekh. Mater., 2009, vol. 8, no. 2, pp. 174–199.

    Google Scholar 

  16. Cahn, J.W., The impurity-drag effect in grain boundary motion, Acta Metall., 1962, vol. 10, pp. 198–789.

    Google Scholar 

  17. Lücke, K. and Stüwe, H.P., On the theory of impurity controlled grain boundary motion, Acta Metall., 1971, vol. 19, pp. 1087–1099.

    Article  Google Scholar 

  18. Ndap, J.-O., Chattopadhyay, K., Adetunji, O.O., Zelmon, D.E., and Burger, A., Thermal diffusion of Cr2+ in bulk ZnSe, J. Cryst. Growth, 2002, vol. 240, pp. 176–184.

    Article  CAS  Google Scholar 

  19. Burke, J.E., Recrystallization and sintering in ceramics, Ceramic Fabrication Processes, Kingery, W.D., Ed., New York: Technology Press & Wiley, 1958, pp. 120–126.

    Google Scholar 

  20. Stevenson, D.A., Diffusion in the chalcogenides of Zn, Cd and Pb, Atomic Diffusion in Semiconductors, Shaw, D., Ed., London: Plenum, 1973. Translated under the title Atomnaya diffuziya v poluprovodnikakh, Moscow: Mir, 1975, p. 684.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Rodin.

Additional information

Original Russian Text © S.A. Rodin, V.B. Ikonnikov, D.V. Savin, E.M. Gavrishchuk, 2017, published in Neorganicheskie Materialy, 2017, Vol. 53, No. 11, pp. 1143–1147.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rodin, S.A., Ikonnikov, V.B., Savin, D.V. et al. Recrystallization behavior of zinc selenide during chromium diffusion doping. Inorg Mater 53, 1115–1119 (2017). https://doi.org/10.1134/S0020168517110097

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168517110097

Keywords

Navigation