Skip to main content
Log in

IR sensitization of PbSnSe films by heat treatment in air

  • Published:
Inorganic Materials Aims and scope

Abstract

This paper examines the IR sensitization of Pb0.975Sn0.025Se films by heat treatment in air. The films were annealed in the temperature range from 403 to 723 K. Heat treatment was accompanied by the recrystallization of agglomerates in the films. The photosensitivity of the films was shown to depend on heat treatment temperature. The films sensitized in the temperature range 653–700 K offer the highest photosensitivity (80–140 μV). The observed increase in the dark resistance and voltage sensitivity of the films is probably due to the formation of oxide phases on the surface of their microcrystallites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Preier, H., Physics and applications of IV–VI compound semiconductor lasers, Semicond. Sci. Technol., 1990, vol. 5, no. 3S, pp. S12–S20.

    Article  Google Scholar 

  2. Butkevich, V.G., Bochkov, V.D., and Globus, E.R., Photodetectors and related devices based on polycrystalline and epitaxial lead chalcogenide layers, Prikl. Fiz., 2001, no. 6, pp. 66–112.

    Google Scholar 

  3. Springholz, G., Molecular beam epitaxy of IV–VI semiconductors: multilayers, quantum dots and device applications, Molecular Beam Epitaxy, Henini, M., Ed., Oxford: Elsevier, 2013, chapter 13, pp. 263–310.

    Chapter  Google Scholar 

  4. Tao, T.F. and Wang, C.C., Epitaxial growth of Pb0.918Sn0.082Se films on CaF2 and BaF2 substrates, J. Appl. Phys., 1972, vol. 43, no. 3, pp. 1313–1316.

    Article  CAS  Google Scholar 

  5. Gad, S., Rafea, M.A., and Badr, Y., Optical and photoconductive properties of Pb0.9Sn0.1Se nano-structured thin films deposited by thermal vacuum evaporation and pulsed laser deposition, J. Alloys Compd., 2012, vol. 515, pp. 101–107.

    Article  CAS  Google Scholar 

  6. Li, C.P., McCann, P.J., and Fang, X.M., Strain relaxation in PbSnSe and PbSe/PbSnSe layers grown by liquid-phase epitaxy on (100)-oriented silicon, J. Cryst. Growth, 2000, vol. 208, nos. 1–4, pp. 423–430.

    Article  CAS  Google Scholar 

  7. Gavaleshko, N.P., Gorlei, P.N., and Shenderovskii, V.A., Uzkozonnye poluprovodniki. Poluchenie i fizicheskie svoistva (Preparation and Physical Properties of Narrow-Gap Semiconductors), Kiev: Naukova Dumka, 1984.

    Google Scholar 

  8. John, J., Fach, A., Masek, J., Müller, P., Paglino, C., and Zogg, H., IR-sensor array fabrication in Pb1–x Sn x Se-on-Si heterostructures, Appl. Surf. Sci., 1996, vol. 102, pp. 346–349.

    Article  CAS  Google Scholar 

  9. Jeffers, J.D., Namjou, K., Cai, Z., McCann, P.J., and Olona, L., Cross-plane thermal conductivity of a PbSnSe/PbSe superlattice material, Appl. Phys. Lett., 2011, vol. 99, no. 4, paper 041903.

    Article  Google Scholar 

  10. Markov, V.F., Maskaeva, L.N., Loshkareva, L.D., Uimin, S.N., and Kitaev, G.A., Pb1–x Sn x Se substitutional solid solutions prepared by coprecipitation from aqueous solutions, Inorg. Mater., 1997, vol. 33, no. 6, pp. 555–557.

    CAS  Google Scholar 

  11. Markov, V.F., Tretyakova, N.A., Maskaeva, L.N., Bakanov, V.M., and Mukhamedzyanov, H.N., Hydrochemical synthesis, structure, semiconductor properties of films of substitutional Pb1–xSnxSe solid solutions, Thin Solid Films, 2012, vol. 520, pp. 5227–5231.

    Article  CAS  Google Scholar 

  12. Petritz, R.L., Theory of photoconductivity in semiconductor films, Phys. Rev., 1956, vol. 104, no. 6, pp. 1508–1516.

    Article  CAS  Google Scholar 

  13. Humphrey, J.N. and Scanlon, W.W., Photoconductivity in lead selenide. Experimental, Phys. Rev., 1957, vol. 105, no. 6, pp. 469–476.

    Article  CAS  Google Scholar 

  14. Kamchatka, M.I., Chashchinov, Yu.M., and Chesnokova, D.B., Effect of oxidation conditions on the phase composition, structure, and properties of photosensitive lead sulfide layers, Inorg. Mater., 2001, vol. 37, no. 9, pp. 910–914.

    Article  CAS  Google Scholar 

  15. Rarenko, I.M., Gavrilenko, N.V., Grabko, V.S., Plashenkov, R.I., Kondratenko, V.M., and Sosnin, A.V., Physical properties of precipitated and activated IV–VI layers, in Nadezhnost’ mikroelektronnykh skhem i elementov (Reliability of Microelectronic Circuits and Elements), Kiev: Naukova Dumka, 1982, pp. 101–119.

    Google Scholar 

  16. Degteva, L.V. and Tikhomirov, G.P., Effect of heat treatment on the macroscopic structure of PbS and PbSe layers, Izv. Akad. Nauk SSSR, Neorg. Mater., 1971, vol. 7, no. 7, pp. 1263–1265.

    CAS  Google Scholar 

  17. Popov, V.P., Tikhonov, P.A., and Tomaev, V.V., Investigation into the mechanism of oxidation on the surface of lead selenide semiconductor structures, Glass Phys. Chem., 2003, vol. 29, no. 5, pp. 494–500.

    Article  CAS  Google Scholar 

  18. Tret’yakova, N.A., Study of heat-sensitization modes of lead selenide films prepared by hydrochemical synthesis, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech., 2014, vol. 8, no. 4, pp. 632–635.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. A. Tretyakova.

Additional information

Original Russian Text © N.A. Tretyakova, 2017, published in Neorganicheskie Materialy, 2017, Vol. 53, No. 10, pp. 1029–1033.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tretyakova, N.A. IR sensitization of PbSnSe films by heat treatment in air. Inorg Mater 53, 1005–1008 (2017). https://doi.org/10.1134/S002016851710017X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S002016851710017X

Keywords

Navigation